Appendix H Water Quality Summaries Laboratory Reports

Lab Sample ID	Station Code	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Hydroxide Alkalinity as CaCO3, mg/L	Carbonate Alkalinity as CaCO3,mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-132-03-1	OC3	0.022	0.36	< 0.05	0.0211	< 0.03	0.0450	0	0	32.7	69	27.4	6.6	< 0.10	< 0.0050	< 0.0050
L-132-03-2	OC4	0.019 J	0.28	< 0.05	0.0134	< 0.03	0.0555	0	0	27.3	72	24.5	1.5	< 0.10	< 0.0050	< 0.0050
L-132-03-3	KF1	0.017 J	0.27	< 0.05	0.0122	< 0.03	0.0453	0	0	28.2	44	22.5	< 1.00	< 0.10	< 0.0050	< 0.0050
L-132-03-4	MC1	0.026	0.86	< 0.05	0.0263	< 0.03	0.0734	0	0	61.0	99	53.9	1.6	< 0.10	< 0.0050	< 0.0050
L-132-03-5	SC1	0.024	0.44	< 0.05	0.0176	< 0.03	0.0481	0	0	32.4	67	27.4	2.2	< 0.10	< 0.0050	< 0.0050
L-132-03-6	SC4	0.026	0.55	< 0.05	0.0189	< 0.03	0.0466	0	0	37.9	70	34.3	5.9	< 0.10	< 0.0050	< 0.0050
L-132-03-7	SC5	0.027	0.51	< 0.05	0.0193	< 0.03	0.0549	0	0	42.0	69	35.3	3.5	< 0.10	< 0.0050	< 0.0050
	CCF1	0.024	0.43	< 0.05	0.0177	< 0.03	0.0437	0	0	33.9	72	28.4	1.9	< 0.10	< 0.0050	< 0.0050
Method Blank		0.015 J	< 0.2	< 0.05	< 0.005	< 0.03	< 0.005	0	0	3.2 J	< 10	< 1.0	< 1.00	< 0.10	< 0.0050	< 0.0050
MDL		0.01	0.2	0.05	0.005	0.03	0.005	0.5	0.5	1.6	10	1.0	1.0	0.045	0.002	0.005
RL		0.02	0.25	0.100	0.0100	0.050	0.0100	1.0	1.0	10.0	12	1.0	1.0	0.10	0.0050	0.0050
Method		EPA 340.2	EPA 300.0	EPA 350.3	QC 10115011M	EPA 365.3	QC 10107041B	EPA 310.1	EPA 310.1	QC10303311A	SM 2540	SM 2340C	SM 2540C	SM4500BB	SM4500CN-E	SM3113B
MDL - Method	Detect	ion Limit			J - detected but n	ot quantified			RL - Reportir	ng Limit						

EPA - Methods for Chemical Analysis of Water and Wastewater, EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Dissolved Iron,	
	mg/L	
Reference Standard ID	Standard	
True Value Ref Std	0.0160	
Laboratory Result	0.0160	
% Recovery Ref Std	100	
Spiked Sample ID	L-132-03-3	
MS actual value	0.0144	
MSD actual value	0.0150	
Matrix spike expected value	0.0150	
MS % of expected value	96.0	
MSD % of expected value	100	
RPD	4.08	
Sample Duplicate ID	L-132-03-7	
Sample Value	0.0330	
Duplicate Value	0.0330	
RPD	0.00	

Laboratory Director

DEPARTMENT OF FISH AND GAME FISH AND WILDLIFE WATER POLLUTION CONTROL LABORATORY

2005 NIMBUS ROAD RANCHO CORDOVA, CA 95670 PHONE (916) 358-2858 ATSS 8-434-2858 FAX (916) 985-4301

LABORATORY REPORT

Name: Agency: Address: City:	Brian Frantz PG&E 3400 Crow Canyon R San Ramon, CA 9458		Lab Number: Other Number: Date Sampled: Date Received: Date Completed:	L-132-03 supplementary 03/18/03 03/19/03 05/17/03				
RE:	Kilrac-Cow		Index-PCA Code:					
RESULTS	OF CHEMICAL ANALY	SIS:						
Laboratory Identificati		Sample Description		olved Iron, mg/L				
L-132-03-	1	OC3	0	.0110				
L-132-03-2	2	OC4	0	.0140				
L-132-03-3	3	KF1	0	.0064				
L-132-03-4	1	MC1	0	0.0940				
L-132-03-	5	SC1	0	.0133				
L-132-03-6	5	SC4	0	.0290				
L-132-03-7	7	SC5	0	.0330				
L-132-03-8	3	CCF1	0	.0210				
Report Lin Detection				.0050 .0012				
See attach	ned sheet for QA sumr	nary						
Methods for		of Water and Wastewa Traphite Furnace AAS.	ter, EPA-600/4-79-0	20, March 1983,				
Cost of An	alysis: \$400.0	00						
Analyst: Sierr	a Foothills Laboratory							
Inorganic Sec	ction Leader	Date	Reviewed by	 Date				

Date

	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-F-01-25	IPS-anions-mix-02-37	IPS-NH3-02-13B	IPS-anions-mix-02-37	IPS-nutrient-02-53	IPS-anions-mix-02-37	IPS-min-03-2D	IPS-MIN-03-2B	IPS-HARD-03-3A	IPS-HARD-03-3A	Standard	Standard	Standard
True Value Ref Std	1.00	20.0	10.0	0.0487	0.100	0.0530	65.4	323	244	32.3	0.50	0.19	0.015
Laboratory Result	1.01	19.5	10.8	0.0490	0.103	0.0609	65.8	365	237	28.4	0.53	0.18	0.0144
% Recovery Ref Std	101	97.5	108	101	103	115	101	113	97.1	87.9	106	94.7	96.0
Spiked Sample ID	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1				534878	534873	
MS actual value	2.15	2.69	21.3	0.0436	0.188	0.0907	58.3				1.23	0.0226	
MSD actual value	2.12	2.65	21.5	0.0435	0.193	0.0911	59.4				1.17		
Matrix spike expected value	2.02	2.68	20.0	0.0436	0.227	0.0928	57.4				1.0	0.024	
MS % of expected value	106	100	107	100	82.8	97.7	102				123	94.2	
MSD % of expected value	105	98.9	108	99.8	85.0	98.2	103				117		
RPD	1.41	1.50	0.93	0.23	2.62	0.44	1.87				5.00		
Sample dilution for MS		1/2		·									
Sample Duplicate ID								L-132-03-8	L-134-03-1	L-134-03-1	534877	534872	
Sample Value								69	24.5	1.0	< 0.10	< 0.0050	
Duplicate Value								75	24.5	1.0	< 0.10	< 0.0050	
RPD								8.33	0.00	0.00	0.00	0.00	

LabSampleID	Station Code	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Hydroxide Alkalinity as CaCO3, mg/L	Carbonate Akalinity as CaCO3,mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness, mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-134-03-1	OC1	0.019 J	0.26	< 0.05	0.0138	< 0.03	0.110	0	0	30.4	46	24.5	1.0	< 0.10	< 0.0050	< 0.0050
Method Blank		0.01 J	< 0.2	< 0.05	< 0.005	< 0.03	< 0.005	0	0	3.2 J	< 10	< 1.0	< 1.0	< 0.10	< 0.0050	< 0.0050
MDL		0.01	0.2	0.05	0.005	0.03	0.005	0.5	0.5	3	10	1.0	1.0	0.045	0.002	0.005
RL		0.02	0.25	0.100	0.0100	0.0500	0.0100	1.0	1.0	10.0	12	1.0	1.0	0.10	0.0050	0.0050
Method		EPA 340.2	EPA 300.0	EPA 350.3	QC 10115011M	QC 10115011D	QC 10107041B	EPA 310.1	EPA 310.1	QC10303311A	SM 2540	SM 2340C	SM 2540C	SM4500BB	SM4500CN-E	SM3113B
MDL - Metho	d Dete	ction Limit			J - detected but	not quantified			RL - Reporting I	_imit						

EPA - Methods for Chemical Analysis of Water and Wastewater EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - <u>Standard Methods for the Examination of Water and Wastewater</u> 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Dissolved Iron, mg/L
Reference Standard ID	Standard
True Value Ref Std	0.0160
Laboratory Result	0.0150
% Recovery Ref Std	93.8
Spiked Sample ID	L-134-03-1
MS actual value	0.0128
MSD actual value	0.0128
Matrix spike expected value	0.0150
MS % of expected value	85.3
MSD % of expected value	85.3
RPD	0.00

Laboratory Director

Date

DEPARTMENT OF FISH AND GAME FISH AND WILDLIFE WATER POLLUTION CONTROL LABORATORY

2005 NIMBUS ROAD RANCHO CORDOVA, CA 95670 PHONE (916) 358-2858 ATSS 8-434-2858 FAX (916) 985-4301

LABORATORY REPORT

Name: Agency: Address: City:	Brian Frantz PG&E 3400 Crow canyon R San Ramon, CA 9458		Lab Number: Other Number: Date Sampled: Date Received: Date Completed: Index-PCA Code:	L-134-03 supplementary 03/19/03 03/20/03 05/14/03
RE:	Kilrac-Cow			
RESULTS (OF CHEMICAL ANALY	SIS:		
Laboratory Identification		Sample Description		ved Iron, ng/L
L-134-03-1	I	OC1	0.0	0060
Report Lim Detection				0050 0012
See attach	ned sheet for QA sumr	nary		
Methods for		of Water and Wastewa raphite Furnace AAS.	<u>ter,</u> EPA-600/4-79-02	20, March 1983,
Cost of An	alysis: \$50.00)		
Analyst: Sierra	a Foothills Laboratory			
Inorganic Sec	etion Leader	Date	Reviewed by	Date

					(0	Ø							
	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate a N, mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-F-01-25	IPS-anions-mix-02-37	IPS-NH3-02-13B	IPS-anions-mix-02-37	IPS-nutrient-02-53	IPS-anions-mix-02-37	IPS-min-03-2D	IPS-MIN-03-2B	IPS-HARD-03-3A	IPS-HARD-03-3A	Standard	Standard	Standard
True Value Ref Std	1.00	20.0	10.0	0.0487	0.0835	0.0530	65.3	323	244	32.3	0.5	0.19	15
Laboratory Result	1.01	19.6	10.8	0.0487	0.0905	0.0542	65.8	365	237	28.4	0.53	0.18	14.4
% Recovery Ref Std	101	98.0	108	100	108	102	101	113	97.1	87.9	106	94.7	96.0
Spiked Sample ID	L-134-03-1	L-132-03-1	L-132-03-1	L-134-03-1	L-134-03-1	L-147-03-16	L-132-03-1				534619	534873	
MS actual value	1.96	2.69	21.3	0.0372	0.133	0.612	58.3				1.13	0.0226	
MSD actual value	2.04	2.65	21.5	0.0379	0.134	0.610	59.4				1.04		
Matrix spike expected value	2.02	2.68	20.0	0.0371	0.143	0.614	57.4				1.0	0.024	
MS % of expected value	97.0	100	107	100	93.0	99.7	102				113	94	
MSD % of expected value	101	98.9	108	102	93.7	99.3	103				104		
RPD	4.00	1.50	0.93	1.86	0.75	0.33	1.87				8.29		
Sample Duplicate ID								L-132-03-8	L-134-03-1	L-134-03-1	534929	534872	
Sample value								69	24.5	1.0	0.36	<0.0050	
Duplicate value								75	24.5	1.0	0.42	<0.0050	
RPD								8.33	0.00	0.00	15.4	0.00	

LabSampleID	Station Code	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Hydroxide Alkalinity as CaCO3, mg/L	Carbonate Alkalinity as CaCO3,mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-150-03-1	NC1	0.015 J	0.30	< 0.05	0.0122	< 0.03	0.0789	0	0	20.8	50	21.8	3.9	< 0.10	< 0.0050	< 0.0050
L-150-03-2	CC1	0.024	0.49	0.065 J	0.0331	< 0.03	0.0647	0	0	57.8	97	49.5	2.0	< 0.10	< 0.0050	< 0.0050
L-150-03-3	CC2	0.030	0.36	0.072 J	0.0439	< 0.03	0.0684	0	0	37.0	79	32.2	6.0	< 0.10	< 0.0050	< 0.0050
Method Blan	k	0.015 J	< 0.2	< 0.05	< 0.005	< 0.03	< 0.005	0	0	< 1.6	< 10	< 1.0	< 1.0	< 0.10	< 0.0050	< 0.0050
MDL		0.01	0.2	0.05	0.005	0.03	0.005	0.5	0.5	1.6	10	1.0	1.0	0.045	0.002	0.005
RL		0.02	0.25	0.100	0.0100	0.0500	0.0100	1.0	1.0	10.0	12	1.0	1.0	0.10	0.0050	0.0050
Method		EPA 340.2	EPA 300.0	EPA 350.3	QC 10115011M	QC 10115011D	QC 10107041B	EPA 310.1	EPA 310.1	QC10303311A	SM 2540	SM 2340C	SM 2540C	SM4500BB	SM4500CN-E	SM3113B
MDL - Meth	od Dete	ection Limit			J - detected but	not quantified			RL - Reporting L	₋imit						

EPA - Methods for Chemical Analysis of Water and Wastewater, EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - <u>Standard Methods for the Examination of Water and Wastewater</u> 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Dissolved Iron, mg/L
Reference Standard ID	Standard
True Value Ref Std	0.0160
Laboratory Result	0.0160
% Recovery Ref Std	100
Spiked Sample ID	536594
MS actual value	0.0144
MSD actual value	0.0150
Matrix spike expected value	0.0150
MS % of expected value	96.0
MSD % of expected value	100
RPD	4.08

Laboratory Director

DEPARTMENT OF FISH AND GAME FISH AND WILDLIFE WATER POLLUTION CONTROL LABORATORY

2005 NIMBUS ROAD RANCHO CORDOVA, CA 95670 PHONE (916) 358-2858 ATSS 8-434-2858 FAX (916) 985-4301

LABORATORY REPORT

Name: Agency: Address: City:	Brian Frantz PG&E 3400 Crow canyon R San Ramon, CA 945		Lab Number: Other Number: Date Sampled: Date Received: Date Completed: Index-PCA Code:	L-150-03 supplementary 03/26/03 03/27/03 05/17/03					
RE:	Kilrac-Cow								
RESULTS	OF CHEMICAL ANALY	SIS:							
Laboratory Identificati		Sample Description		lved Iron, ng/L					
L-150-03-	I	NC1	0.0150						
L-150-03-2	2	CC1	0.0	0088					
L-150-03-0	3	CC2	0.0073						
Report Lin Detection				0050 0012					
See attach	ned sheet for QA sumr	nary							
Methods for		of Water and Wastewa Graphite Furnace AAS.	<u>ter,</u> EPA-600/4-79-02	20, March 1983,					
Cost of An	alysis: \$150.0	00							
Analyst: Sierr	a Foothills Laboratory								
Inorganic Sec	ction Leader	Date	Reviewed by	 Date					

Date

	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nirrie + Nitrate as N, mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-F-01-25	IPS-anions-mix-02-37	IPS-NH3-02-13B	IPS-anions-mix-02-37	IPS-nutrient-02-53	IPS-anions-mix-02-37	IPS-min-03-2D	IPS-MIN-03-2B	IPS-HARD-03-3B	IPS-HARD-03-3A	Standard	Standard	Standard
True Value Ref Std	1.00	20.0	10.0	0.0487	0.0835	0.0530	65.3	323	244	32.3	0.50	0.19	15
Laboratory Result	1.01	18.9	11.2	0.0490	0.0751	0.0574	64.4	332	234	31.6	0.58	0.19	13.8
% Recovery Ref Std	101	94.5	112	101	89.9	108	98.6	103	95.9	97.8	116	100	92.0
Spiked Sample ID	L-132-03-1	L-150-03-1	L-150-03-1	L-150-03-1	L-150-03-1	L-150-03	L-147-03-15				534619	534883	
MS actual value	2.15	0.76	9.87	0.0361	0.123	0.124	247				1.13	0.0226	
MSD actual value	2.12	0.77	10.1	0.0357	0.125	0.125	246				1.04		
Matrix spike expected value	2.02	0.77	10.0	0.0357	0.136	0.125	251				1.0	0.0240	
MS % of expected value	106	98.7	98.7	101	90.4	99.2	98.4				113	94.2	
MSD % of expected value	105	100	101	100	91.9	100	98.0				104		
RPD	1.41	1.31	2.30	1.11	1.61	0.80	0.41				8.29		
Carrala Dunlianta ID								1 450 00 0	1 450 00 0	1 450 00 7	F24F02	524002	
Sample Duplicate ID								L-150-03-3 79	L-150-03-3 31.7	L-156-03-7	534583	534882 < 0.0050	
Sample Value Duplicate Value								79	31.7	1.3 1.3	10 10	< 0.0050	
RPD								0.00	3.11	0.00	0.00	0.00	

LabSampleID	Station Code	Sample Collection Date	Total Alkalinity as CaCO3, mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO3, mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho Phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
	KF1	10/1/2003	58.8	< 0.05	0.33 J	49.0	0.025 J	0.0587	0.0188	76	5.8	< 0.015	< 0.0020	< 0.10	< 0.0050	< 0.005
L-483-03-2	OC1	10/1/2003	44.8	< 0.05	0.32 J	49.5	0.032 J	0.0546	0.0242	76	< 1.0	< 0.015	< 0.0020	< 0.10	< 0.0050	< 0.005
L-483-03-3	OC3	10/1/2003	48.7	< 0.05	0.55	49.5	0.035 J	0.0571	0.0361	90	1.5	0.0202 J	0.0099	< 0.10	< 0.0050	< 0.005
L-483-03-4	OC4	10/1/2003	46.5	< 0.05	0.34 J	50.0	0.028 J	0.0696	0.0228	77	1.4	< 0.015	0.0024 J	< 0.10	< 0.0050	< 0.005
L-483-03-5	SC1	10/1/2003	48.1	< 0.05	0.43	51.0	0.030 J	0.0532	0.0283	92	< 1.0	< 0.015	0.0474	< 0.10	< 0.0050	< 0.005
L-483-03-6	CCF1	10/1/2003	58.0	< 0.05	0.58	59.8	0.029 J	0.0586	0.0326	101	1.2	0.0164 J	0.0433	< 0.10	< 0.0050	< 0.005
L-483-03-7	SC4	10/1/2003	63.2	< 0.05	0.60	67.6	0.030 J	0.0787	0.0354	113	1.1	< 0.015	0.0188	< 0.10	< 0.0050	< 0.005
L-483-03-8	SC5	10/1/2003	65.0	< 0.05	0.60	67.6	0.029 J	0.0829	0.0358	109	1.4	0.0157 J	0.0233	< 0.10	< 0.0050	< 0.005
L-483-03-9	MC1	10/1/2003	80.5	< 0.05	0.81	87.0	0.029 J	0.119	0.0519	136	5.2	0.0299 J	0.0154	< 0.10	< 0.0050	< 0.005
Method Blank			< 3	< 0.05	< 0.2	< 1.0	< 0.02	< 0.001	< 0.001	< 10	< 1.0	< 0.015	< 0.0020		< 0.0050	
MDL			3	0.05	0.2	1.0	0.02	0.001	0.001	10	1.0	0.015	0.0020	0.0450	0.0020	0.005
RL			8.0	0.10	0.35	1.0	0.050	0.0080	0.0080	12	1.0	0.0500	0.0050	< 0.10	< 0.0050	< 0.0050
Method			QC10303311A	EPA 350.3	EPA 300.0	SM 2340C	SM 4500-F C	QC 10107041B	QC 10115011M	SM 2540	SM 2540C	QC 10115011D	SM 3113	SM 4500BB	SM 4500CN-E	SM 3113B
Date of Analysis			10/13/2003	10/7/2003	10/17/2003	10/2/2003	10/2/2003	10/3/2003	10/2/2003	10/8/2003	10/2/2003	10/6/2003	10/3/2003	10/7/2003	10/8/2003	10/17/2003
MDL - Method De	etection Lim	it		J - detected bu	t not quantified				_							

EPA - Methods for Chemical Analysis of Water and Wastewater , EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - <u>Standard Methods for the Examination of Water and Wastewater</u>, 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Total Alkalinity as CaCO ₃ , mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO ₃ , mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron GFAAS, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-min-03-11A	IPS-NH3-02-13A	IPS-anions-mix-02-57	IPS-HARD-03-40E	IPS-F-01-35	IPS-anions-mix-02-57	IPS-anions-mix-02-57	IPS-min-03-24C	IPS-HARD-03-40E	IPS-nutrient-02-53	IPS-1640-03-1	Standard	Standard	Standard
True Value Ref Std	58.8	1.00	20.0	112	1.00	0.0530	0.0487	355	60.5	0.0835	0.0343	0.50	0.19	0.0150
Laboratory Result	67.7	1.15	19.4	118	1.08	0.0555	0.0475	339	58.7	0.0900	0.0312	0.49	0.18	0.0140
% Recovery Ref Std	115	115	97.0	105	108	105	97.5	95.5	97.0	108	91.0	98.0	94.7	93.3
Spiked Sample ID	Run with L-487-03-1	L-483-03-2	L-483-03-9		L-483-03-1	L-483-03-1	L-483-03-1			L-483-03-1	L-483-03-3	L-483-03-2	L-483-03-2	L-483-03-5
MS actual value	76.5	2.05	1.17		1.91	0.165	0.0417			0.139	0.0144	0.960	0.0461	0.0103
MSD actual value	75.0	2.24	1.19		1.93	0.162	0.0420			0.135	0.0146			0.0098
Matrix spike expected value	76.6	2.02	1.23		2.02	0.153	0.0419			0.138	0.0135	1.00	0.0480	0.0100
MS % of expected value	99.9	101	95.1		94.6	108	99.5			101	107	96.0	96.0	103
MSD % of expected value	97.9	111	96.7		95.5	106	100			97.8	108			98.0
RPD	1.98	8.86	1.69		1.04	1.83	0.72			2.92	1.38			4.98
Sample Duplicate ID				L-483-03-9				L-483-03-1	IPS-HARD-03-40E			L-483-03-1	L-483-03-1	L-483-03-3
Sample Value				89.2				76	57.7			< 0.10	< 0.0050	< 0.005
Duplicate Value Sample Average				84.8 87.0				77 76	59.7 58.7			< 0.10 < 0.10	< 0.0050 < 0.0050	< 0.005 < 0.005
RPD				5.06				1.31	3.41			0.00	0.00	0.00

LabSampleID	Station Code	Sample Collection Date	Total Alkalinity as CaCO3, mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO3, mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho Phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-487-03-1	CC1	10/2/2003	52.1	< 0.05	0.46	50.4	0.031 J	0.0547	0.0542	104	7.7	0.0932	< 0.0020	< 0.10	< 0.0050	< 0.005
L-487-03-2	CC2	10/2/2003	29.8	< 0.05	0.38	30.5	0.047 J	0.0773	0.0523	81	< 1.0	0.0410 J	0.0020 J	< 0.10	< 0.0050	< 0.005
L-487-03-3	NC1	10/2/2003	54.4	< 0.05	0.35	51.9	0.036 J	0.0408	0.0302	94	1.0	< 0.015	< 0.0020	< 0.10	< 0.0050	< 0.005
Method Blank			< 3	< 0.05	< 0.2	< 1.0	0.020 J	< 0.001	< 0.001	< 10	< 1.0	< 0.015	< 0.0020		< 0.0050	
MDL			3	0.05	0.2	1.0	0.02	0.001	0.001	10	1.0	0.015	0.0020	0.0450	0.0020	0.005
RL			8.0	0.10	0.35	1.0	0.050	0.0080	0.0080	12	1.0	0.0500	0.0050	< 0.10	< 0.0050	< 0.0050
Method			QC10303311A	EPA 350.3	EPA 300.0	SM 2340C	SM 4500-F C	QC 10107041B	QC 10115011M	SM 2540	SM 2540C	QC 10115011D	SM 3113	SM 4500BB	SM 4500CN-	SM 3113B
Date of Analysis			10/13/2003	10/6/2003	10/14/2003	10/7/2003	10/14/2003	10/3/2003	10/3/2003	10/8/2003	10/7/2003	10/6/2003	10/3/2003	10/7/2003	10/8/2003	10/17/2003
MDL - Method De	L etection Lim	l nit		J - detected bu	t not quantified											

EPA - Methods for Chemical Analysis of Water and Wastewater_, EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Total Alkalinity as CaCO3, mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO ₃ , mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron GFAAS, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-min-03-11A	IPS-NH3-02-13A	IPS-anions-mix-02-57	IPS-HARD-03-40A	IPS-F-01-35	IPS-anions-mix-02-57	IPS-anions-mix-02-57	IPS-min-03-24C	IPS-HARD-03-40E	IPS-nut-02-53	IPS-1640-03-1	Standard	Standard	Standard
True Value Ref Std	58.8	1.00	20.0	112	1.00	0.0530	0.0487	355	60.5	0.0835	0.0343	0.50	0.19	0.0150
Laboratory Result	67.7	1.13	18.7	107	1.14	0.0555	0.0478	339	64.4	0.0900	0.0312	0.49	0.18	0.0138
% Recovery Ref Std	115	113	93.5	95.5	114	105	98.1	95.5	106	108	91.0	98.0	94.7	92.0
Spiked Sample ID	L-487-03-1	L-487-03-2	L-487-03-1		L-487-03-1	Run with L-483-03-1	L-487-03-1			Run with L-483-03-1	Run with L-483-03-3	Run with L-483-03-2	Run with L-483-03-2	Run with L-483-03-1
MS actual value	76.5	1.91	0.84		2.04	0.165	0.0742			0.139	0.0144	0.960	0.0461	0.0105
MSD actual value	75.0	1.96	0.85		2.07	0.162	0.0745			0.135	0.0146			
Matrix spike expected value	76.6	2.03	0.91		2.03	0.153	0.0738			0.138	0.0135	1.00	0.0480	0.0100
MS % of expected value	99.9	94.1	92.3		100	108	101			101	107	96.0	96.0	105
MSD % of expected value	97.9	96.6	93.4		102	106	101			97.8	108			
RPD	1.98	2.58	1.18		1.46	1.83	0.40			2.92	1.38			
Sample Duplicate ID				L-487-03-1				Run with L-483-03-1	L-487-03-1			L-483-03-1	L-483-03-1	L-483-03-3
Sample Value				50.4				76	7.6			< 0.10	< 0.0050	< 0.005
Duplicate Value				50.4				77	7.9			< 0.10	< 0.0050	< 0.005
Sample Average				50.4				76	7.7			< 0.10	< 0.0050	< 0.005
RPD				0.00				1.31	3.87			0.00	0.00	0.00

			1 1 2	2003		
	March	May	June	July	August	0
Time	10:00	16:25	13:14	13:15	10:54	
In situ Parameters						
Water Temperature (°C) Dissolved Oxygen (mg/L)	5.31	8.85 10.16	9.23	11.60 10.25	9.78	9
Specific Conductance (µmhos/cm)	52	54	79	10.23	10.98	+ +
pH	7.98	7.68	8.06	8.25	8.23	1
Turbidity (NTU)	2.8	< 0.5	1.0	0.1	1.5	
Depth (M)	1.0	1.0	1.0	1.0	1.0	
Analytical Parameters						
Total Coliform (MPN/100 mL)	80	NS	NS	NS	NS	
Fecal Coliform (MPN/100 mL)	2	NS	NS	NS	NS	
Total Metals:						\mathbf{H}
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	+
Barium (mg/L)	0.0037	NS	NS	NS	NS	0.0
Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<0
Copper (µg/L)	0.11	NS NS	NS NS	NS NS	NS NS	<0
Lead (μg/L) Manganese (μg/L)	0.035 4.6	NS NS	NS NS	NS NS	NS NS	<0
Silver (μg/L)	<0.008	NS	NS	NS	NS	<0
Zinc (µg/L)	0.43	NS	NS	NS	NS	<
Dissolved Metals:						
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	+
Barium (mg/L)	0.003	NS	NS	NS	NS	0.0
Cadmium (µg/L)	< 0.002	NS	NS	NS	NS	<0
Copper (µg/L)	0.07 0.015	NS NS	NS NS	NS NS	NS NS	<0.0
Iron (mg/L) Lead (μg/L)	<0.013	NS	NS	NS NS	NS	<0.0
Manganese (μg/L)	0.24	NS	NS	NS	NS	<0
Mercury (μg/L)	0.00221	NS	NS	NS	NS	0.000
Silver (µg/L)	<0.008	NS NS	NS NS	NS NS	NS NS	<0
Zinc (µg/L)	0.3	INS	NS NS	INS	NS NS	-
Ammonia - Total (mg/L)	< 0.05	NS	NS	NS	NS	<
Total Hardness, as CaCO3 (mg/L)	21.8	NS	NS	NS	NS	+
Chloride (mg/L) Fluoride (mg/L)	0.30 0.02 J	NS NS	NS NS	NS NS	NS NS	0
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0789	NS	NS	NS	NS	0.0
Alkalinity - Total (mg/L)	21	NS	NS	NS	NS	
Total Dissolved Solids (mg/L)	50	NS	NS	NS	NS	
Total Suspended Solids (mg/L) Total Phosphorous (mg/L)	3.9 <0.03	NS NS	NS NS	NS NS	NS NS	<0
Orthophosphate (mg/L)	0.0122	NS	NS	NS	NS	0.0
Total Calcium (mg/L)	5.33	NS	NS	NS	NS	1
Total Magnesium (mg/L)	2.20	NS	NS	NS	NS	
Total Sodium (mg/L) Dissolved Calcium (mg/L)	2.14 5.24	NS NS	NS NS	NS NS	NS NS	1
Dissolved Magnesium (mg/L)	2.2	NS	NS	NS	NS	1
Dissolved Sodium (mg/L)	2.12	NS	NS	NS	NS	
Total Boron (mg/L)	<0.10	NS	NS	NS	NS	
Cyanide (mg/L) Molybdenum (mg/L)	<0.0050 <0.0050	NS NS	NS NS	NS NS	NS NS	<0.0
PCBs						
Aroclor 1016 (μg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1221 (µg/L)	<1.0	NS	NS	NS	NS	
Arcelor 1242 (µg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	++
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
Aroclor 1248 (µg/L) Aroclor 1254 (µg/L)	<1.0	NS	NS	NS	NS	##
Aroclor 1260 (µg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1268 (μg/L)	<1.0	NS	NS	NS	NS	
J = Estimated concentration below the rep	orting limit (DI) and	ahove the method do	ection limit (MDI) +	he MDL is based on a	etatistical	
calculation, the RL is normally set to 5 to				HE MIDE IS DASED ON A	Statistical	

	Statistics	
	Statistics	
MAX 11.60	MIN 5.31	AVG 8.74
10.25	9.48	9.99
117.00	52.00	81.25
8.25 2.80	7.68 0.00	8.00 0.97
1.00	1.00	1.00
0	0	#DIV/0!
0.0058	0.0037	0.00475
0 11	0	#DIV/0!
0.11	0.11 0.035	0.11 0.035
4.6	1.05	2.825
0.43	0.43	#DIV/0! 0.43
0.43	0.43	0.43
0	0	#DIV/0!
0	0	#DIV/0!
0.07	0.07	0.07
0.015	0.015	0.015 #DIV/0!
0.00221	0.000395	0.001303
0.3	0.3	#DIV/0! 0.3
0		#DI\//0I
51.9	21.8	#DIV/0! 36.85
0.35		0.325
0.0789	0.0408	0.05985
54.4		37.6
94		72
3.9	1 0	2.45 #DIV/0!
0.0302	0.0122	0.0212
11.3	5.33	8.315
5.51 4.62	2.2 2.14	3.855 3.38
11.2	5.24	8.22
5.56		3.88
4.66	2.12	3.39

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

March	Flag	California 7	Toxics Rules	s Criteria (USEPA) ¹						US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
		Freshv	water Aquatic	Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
10:00 5.31 10.05 52 7.98 2.8		ccc	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
<0.10 0.00370 <0.002 0.11000 0.03500 4.60000 <0.008 0.43000 <0.10 <0.002 0.07000 <0.01 2.21E-03 <0.008 0.30000		0.7445 2.5383 0.4576 32.9603 150 0.7242 2.4368 0.4635	0.8103 3.3327 11.7432 32.9603 340 0.8166 3.1994 11.8953	0.2955 0.25117	0.08754 2.5383 0.4576 32.9603 150 0.08516 2.4368 0.4635 0.77 32.4988	0.45342 3.3327 11.7432 32.9603 340 0.4569 3.1994 11.8953 1.40 32.2351	0.2755 0.23419	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
2 <0.05 21.8 0.3 0.0 0.1 20.8 50.0 <0.0050	1	0.0052	0.022		2.50 230 ≥ 20 0.0052	5.83 860 0.022		2 10 0.15	250 500	4 10	250 2 500	200/400	0.7	220 0.00017
	10:00 5.31 10:05 52 7.98 2.8	10:00 5.31 10.05 52 7.98 2.8 <0.10 0.00370 <0.002 0.11000 0.03500 4.60000 <0.008 0.43000 <0.01 2.21E-03 <0.008 0.30000 2 <0.05 21.8 0.3 0.0 J 0.1 20.8 50.0 <0.0050	March Flag Fresht	March Flag Freshwater Aquatic	CCC	March Flag Freshwater Aquatic Life Protection CCC CMC Instantaneous Max CCC	March Flag	March Flag	March Flag Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Health (March Flag Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Drinking V	March Flag	March Flag Freshwater Aquatic Life Protection Freshwater Aquatic Life Protect	March Flag Freshwater Aquatic Life Protection Freshwater Aquatic Life Protect	March Flag Predwater Aquatic Life Protection Predwater Aqu

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- CMC = Maximum concentration (1-hour average)
- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	May	Flag			s Criteria (USEPA) 1	Amb	oient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (0	CDPH) ³	USE /ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
In situ Parameters	8.85 10.16 54 7.68 <0.5		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	June	Flag			es Criteria (USEPA) 1 c Life Protection	Ami	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
Time	13:14		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	10.28 9.23												>7		
Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	79 8.06 1.0							6.5-9.0		900 5			6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Lulifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	July	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Jater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,
			CCC	CMC	Instantaneous Max	ССС	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:15														
In situ Parameters															
Water Temperature (°C)	11.60														
Dissolved Oxygen (mg/L)	10.25												>7		
Specific Conductance (mmhos/cm)	102									900					
pH (Standard Units)	8.25							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NC1 (North Canyon Creek above diversion)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
	10.51		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:54														
In situ Parameters															
Water Temperature (°C)	9.78														
Dissolved Oxygen (mg/L)	10.98												>7		
Specific Conductance (mmhos/cm)	105									900					
pH (Standard Units)	8.23							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.5									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NC1 (North Canyon Creek above diversion)	October	Flag		Toxics Rule	s Criteria (USEPA) 1		PA National F	Recommended 2 uality Criteria	Cal Dept.			EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	nwater Aquatio	Life Protection	Fresh	water Aquatic	Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
Time	8:44		ccc	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm)	9.21 9.48 117									900			>7		
pH (Standard Units) Turbidity (NTU)	8.10 0.0							6.5-9.0		5			6.5-8.5		
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Cadmium (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Zinc (mg/L) Jinc (mg/L) Jinc (mg/L) Jinc (mg/L)	 <0.10 0.00580 <0.002 <0.003 <0.002 <0.008 <0.02 <0.008 <0.002 <0.002 <0.003 <0.002 <0.003 <0.002 <0.002 <0.003 <0.003 <0.004 <0.004 <0.005 <0.005		1.4711 5.3265 1.3806 68.7350 150 1.3776 5.1134 1.2240	2.1557 7.5462 35.4273 68.7350 340 2.0942 7.2444 31.4087	1.3137 1.11662	0.16647 5.3265 1.3806 68.7350 150 0.15589 5.1134 1.2240 0.77	1.09513 7.5462 35.4273 68.7350 340 1.0639 7.2444 31.4087 1.40	1.2249 1.04113	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1.300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L)	4 <0.05 51.9					2.10	4.64						200/400		
Total rearchess, as CacO5 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L)	0.4 0.0 0.0 54.4	J				230 ≥ 20	860		2 10	250	4 10	250 2			
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	94.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

			20	003		
	March	May	June	July	August	Octobe
Time	NS	17:00	13:47	13:45	11:30	9:42
In situ Parameters						
Water Temperature (°C)	NS	8.36	10.82	11.91	10.90	10.26
Dissolved Oxygen (mg/L)	NS	10.31	9.04	10.01	9.14	8.45
Specific Conductance (µmhos/cm)	NS	67	79	93	95	18
pH	NS	7.51	7.89	8.06	8.08	7.97
Turbidity (NTU)	NS	0.5	1.0	0.1	1.9	0.8
Depth (M)	NS	1.0	1.0	1.0	1.0	1.0

	Statistics	
MAX	MIN	AVG
11.91	8.36	10.18
10.31	8.45	9.59
93.00	18.00	59.33
93.00 8.06	18.00 7.51	59.33 7.85
8.06	7.51	7.85
8.06 0.80	7.51 0.10	7.85 0.47
8.06 0.80	7.51 0.10	7.85 0.47
8.06 0.80	7.51 0.10	7.85 0.47

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	March	Flag			s Criteria (USEPA) 1	Am	bient Water (Recommended ² Quality Criteria	Cal Dept. Health (CDPH) 3	USE	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	
-			Fresh	water Aquation	Life Protection	Freshy	vater Aquation	Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	May	Flag			es Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (- /	USE ater Standards	PA.	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
Time	17:00		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	8.36 10.31 67 7.51 0.5							6.5-9.0		900			>7 6.5-8.5		

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Unifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	June	Flag			es Criteria (USEPA) 1 c Life Protection	Am	bient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	13:47		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	10.82 9.04 79 7.89 1.0							6.5-9.0		900			>7 6.5-8.5		

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California *Water Quality Granted Toxics Rule*]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	July	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE		RWQCB 4 Basin Plan	CTR (Human Health	, ,
			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:45														
In situ Parameters															
Water Temperature (°C)	11.91														
Dissolved Oxygen (mg/L)	10.01												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.06							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

NC2 (North Canyon Creek above confluence with South Canyon Creek)	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria ic Life Protection	Cal Dept. Health (CDPH) ³	USF ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	$1^{\circ}MCL$	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:30														
In situ Parameters															
Water Temperature (°C)	10.90														
Dissolved Oxygen (mg/L)	9.14												>7		
Specific Conductance (mmhos/cm)	95									900					
pH (Standard Units)	8.08							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.9									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria Shaded cells represent exceedances of the criteria CCC = Continuous concentration (4-day average)

- CCC = Continuous concentration (1-day average)

 CMC = Maximum concentration (1-hour average)

 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.

 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

 NS = Constituent not sampled for during monitoring program

NC2 (North Canyon Creek above confluence with South Canyon Creek)	October	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:42														
In situ Parameters															
Water Temperature (°C)	10.26														
Dissolved Oxygen (mg/L)	8.45												>7		
Specific Conductance (mmhos/cm)	18									900					
pH (Standard Units)	7.97							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- L. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131) 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
 Constituent not sampled for during monitoring program

							
					2003		
	Marc	h	May	June	July	August	Octo
Time	9:00		16:10	13:01	13:02	10:36	8:1
Time	7.00		10.10	13.01	13.02	10.30	0.1
In situ Parameters							
Water Temperature (°C)	7.50		8.53	9.03	9.96	9.20	8.9
Dissolved Oxygen (mg/L)	9.49		10.20	9.39	9.81	9.31	9.5
Specific Conductance (μmhos/cm) pH	109 7.79		108 7.64	7.90	116 8.30	8.16	7.9
Turbidity (NTU)	1.19		0.1	1.0	0.1	0.0	0
Depth (M)	0.1		0.1	0.1	0.1	0.1	0
Analytical Parameters							
Total Coliform (MPN/100 mL)	500		NS	NS	NS	NS	35
Fecal Coliform (MPN/100 mL)	80		NS	NS	NS	NS	3
Total Metals:							
Arsenic (µg/L)	< 0.10		NS	NS	NS	NS	<0.1
Barium (mg/L)	0.0085		NS	NS	NS	NS	0.012
Cadmium (µg/L)	< 0.002		NS	NS	NS	NS	< 0.00
Copper (µg/L)	0.09		NS	NS	NS	NS	< 0.00
Lead (µg/L)	0.021		NS NS	NS NS	NS NC	NS	0.0
Manganese (μg/L) Silver (μg/L)	2.24 <0.008		NS NS	NS NS	NS NS	NS NS	<0.00
Zinc (µg/L)	1.56		NS NS	NS	NS	NS	0.00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.50		1.0	110	1.0	1.0	1
Dissolved Metals:							
Arsenic (µg/L)	< 0.10		NS NS	NS	NS	NS	<0.
Barium (mg/L) Cadmium (μg/L)	0.0081 <0.002		NS NS	NS NS	NS NS	NS NS	0.010 <0.00
Copper (µg/L)	0.06		NS	NS	NS	NS	<0.00
Iron (mg/L)	0.0088		NS	NS	NS	NS	<0.00
Lead (µg/L)	< 0.01	DNQ	NS	NS	NS	NS	< 0.00
Manganese (μg/L)	0.59		NS	NS	NS	NS	0.1
Mercury (μg/L)	0.00195		NS	NS	NS	NS	0.00067
Silver (µg/L)	< 0.008		NS NS	NS NS	NS NS	NS NS	<0.00
Zinc (µg/L)	1.18		INS.	NS NS	INS INS	INS	0.4
Ammonia - Total (mg/L)	0.065	J	NS	NS	NS	NS	<0.0
Total Hardness, as CaCO3 (mg/L)	49.5		NS	NS	NS	NS	50
Chloride (mg/L)	0.49		NS	NS	NS	NS	0.4
Fluoride (mg/L)	0.024		NS	NS	NS	NS	0.03
Nitrate, as NO3 (mg/L) + Nitrite (mg/L) Alkalinity - Total (mg/L)	0.0647 57.8		NS NS	NS NS	NS NS	NS NS	0.054
Total Dissolved Solids (mg/L)	97		NS	NS	NS	NS	10
Total Suspended Solids (mg/L)	2.0		NS	NS	NS	NS	7
Total Phosphorous (mg/L)	< 0.03		NS	NS	NS	NS	0.093
Orthophosphate (mg/L)	0.0331		NS	NS	NS	NS	0.054
Total Calcium (mg/L)	11.00		NS	NS	NS	NS	10.9
Total Magnesium (mg/L)	5.09		NS	NS	NS	NS	5.5
Total Sodium (mg/L) Dissolved Calcium (mg/L)	3.86		NS NS	NS NS	NS NS	NS NS	4.:
Dissolved Calcium (mg/L) Dissolved Magnesium (mg/L)	11.10 5.10		NS NS	NS NS	NS NS	NS NS	10.5
Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	3.83		NS NS	NS	NS	NS	4.4
Total Boron (mg/L)	<0.10		NS	NS	NS	NS	<0.
Cyanide (mg/L)	< 0.0050		NS	NS	NS	NS	< 0.00
Molybdenum (mg/L)	< 0.0050		NS	NS	NS	NS	< 0.00:
ngn							
PCBs	.1 0		NIC) DIG	NIG	NO	++
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0		NS NS	NS NS	NS NS	NS NS	<0
Aroclor 1221 (µg/L) Aroclor 1232 (µg/L)	<1.0		NS NS	NS	NS	NS NS	<0
Aroclor 1232 (μg/L) Aroclor 1242 (μg/L)	<1.0		NS	NS	NS	NS	<0
Aroclor 1248 (μg/L)	<1.0		NS	NS	NS	NS	<0
Aroclor 1254 (μg/L)	<1.0		NS	NS	NS	NS	<0
Aroclor 1260 (μg/L)	<1.0		NS	NS	NS	NS	<0
Aroclor 1268 (μg/L)	<1.0		NS	NS	NS	NS	<0
							++
J = Estimated concentration below the re	eporting limit (I	RL) and al	oove the method de	etection limit (MDL)	the MDL is based on a	statistical	+
calculation, the RL is normally set to 5 to					, is oused off a		+
DNQ = Detected above MDL and below			•		Value listed as less than	the RL.	11

MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4 0.10 0
MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
MAX MIN AVG 9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
9.96 7.50 8.7 10.20 9.49 9.7 116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
10.20 9.49 9.7 116.00 108.00 112.0
116.00 108.00 112.0 8.30 7.64 7.9 1.40 0.10 0.4
8.30 7.64 7.9 1.40 0.10 0.4
0.10 0.10 0.1
0 0 #DIV/0!
0.0125 0.0085 0.010
0 0 #DIV/0!
0.09 0.09 0.0 0.021 0.01 0.015
2.26 2.24 2.2
0 0 #DIV/0!
1.56 0.93 1.24
0 0 #DIV/0!
0 0 #DIV/01
0 0 #DIV/0! 0.06 0.06 0.0
0.0088 0.0088 0.008
0 0 #DIV/0!
0.00195 0.000679 0.00131
0.00193 0.00079 0.00131 0 0 #DIV/0!
1.18 0.48 0.8
0.065 0.065 0.06
50.4 49.5 49.9
0.49 0.46 0.47
0.0647 0.0547 0.059
0.0647 0.0547 0.059 57.8 52.1 54.9
104 97 100.
7.7 2 4.8
0.0932 0.0932 0.093 0.0542 0.0331 0.0436
11 10.9 10.9
5.51 5.09 5.
4.5 3.86 4.1
11.1 10.5 10. 5.43 5.1 5.26
4.47 3.83 4.1

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above	Mond			a Toxics Rule	es Criteria (USEPA) ¹			l Recommended ²		. of Public	US	EPA	RWQCB 4	CTR (Human Health	30-day average)
diversion)	March	Flag		A	c Life Protection			r Quality Criteria tic Life Protection	Health (Vater Standards		Basin Plan	G GD:1:	0.1
											1		Objectives	Sources of Drinking water	Other waters
Time	9:00		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
	9:00														
In situ Parameters Water Temperature (°C)	7.50														
Dissolved Oxygen (mg/L)	9.49												>7		
Specific Conductance (µmhos/cm)	109									900			-/		
pH (Standard Units)	7.79							6.5-9.0		,00			6.5-8.5		
Turbidity (NTU)	1.4									5					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (µg/L)	< 0.10								50		10				
Barium (mg/L)	0.00850								1		2			1.0	
Cadmium (µg/L)	< 0.002		1.4174	2.0436		0.16073	1.04367		5		5			1.0	
Copper (µg/L)	0.09000		5.1153	7.2170		5.1153	7.2170		1.300	1.000	1.300	1,000		1.300	
Lead (µg/L)	0.02100		1.2998	33.3551		1.2998	33.3551		15	-,	15	-,		-,	
Manganese (μg/L)	2.24000									50		50			
Silver (µg/L)	< 0.008				1.2109			1.1291		100					
Zinc (µg/L)	1.56000		66.0321	66.0321		66.0321	66.0321			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (µg/L)	< 0.10		150	340		150	340								
Cadmium (µg/L)	< 0.002		1.3301	1.9893		0.15083	1.0159								
Copper (µg/L)	0.06000		4.9107	6.9283		4.9107	6.9283								
Lead (μg/L)	< 0.01	DNQ	1.1613	29.8017		1.1613	29.8017								
Mercury (µg/L)	1.95E-03				1.02020	0.77	1.40	0.05051							
Silver (µg/L) Zinc (µg/L)	<0.008 1.18000		65.1077	64.5794	1.02929	65.1077	64.5794	0.95971							
Additional Analytical Parameters	1.10000		05.1077	01.5771		05.1077	01.5771								
Fecal Coliform (MPN/100mL) ¹⁰	80												200/400		
` '						3.00	0.25						200/400		
Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L)	0.065 49.5	J				3.22	8.25								
Chloride (mg/L) Chloride (mg/L)						220	960			250		250			
Fluoride (mg/L)	0.5 0.0					230	860		2	230	4	250 2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸	0.0								10		10	2			
Alkalinity - Total (mg/L)	57.8					≥ 20			10		10				
Total Dissolved Solids (mg/L)	97.0					≥ 20				500		500			
Cyanide (mg/L)	<0.0050		0.0052	0.022		0.0052	0.022		0.15	500	0.2	500		0.7	220
PCBs (µg/L)	0.0		0.014	0.022		0.014	0.022		0.5		0.5			0.00017	0.00017
Primary and Secondary MCL = Maximum contamina	nt lavala (MC	T a) .	mimora MCI	o ono boolsh l	hoosed suitouis and secon	dom: MCL o	ana harman malfons	boood onitonio							

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- CMC = Maximum concentration (1-hour average)
- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- $10. Fecal\ Coliform\ limit\ is\ a\ monthly\ geometric\ mean\ of < 200\ /\ 100\ mL,\ and\ no\ more\ than\ 10\%\ of\ the\ monthly\ observations\ above\ 400\ /100\ mL.$

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	May	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USI /ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	16:10		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL	Objectives	(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	8.53 10.20												>7		
Plassived Oxygen (http:// Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	10.20 108 7.64 0.1							6.5-9.0		900 5			6.5-8.5		

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	June	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Jater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
Time	13:01		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	9.03 9.39												>7		
Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	112 7.90 1.0							6.5-9.0		900 5			6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	July	Flag	California	Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:02														
In situ Parameters															
Water Temperature (°C)	9.96														
Dissolved Oxygen (mg/L)	9.81												>7		
Specific Conductance (mmhos/cm)	116									900					
pH (Standard Units)	8.30							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CC1 (South Canyon Creek above diversion)	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	10:36		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters	10.30														
Water Temperature (°C)	9.20														
Dissolved Oxygen (mg/L)	9.31												>7		
Specific Conductance (mmhos/cm) pH (Standard Units)	111 8.16							6.5-9.0		900			6.5-8.5		
Turbidity (NTU)	0.0									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CC1 (South Canyon Creek above diversion)	October	Flag			es Criteria (USEPA) 1	Ar	nbient Water Q	decommended 2 duality Criteria Life Protection	Cal Dept. Health (USI Vater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health	n 30-day average) Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	8:16 8.93 9.51 115 7.92 0.1		ccc	CMC	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L)	 <0.10 0.01250 <0.002 <0.003 <0.01000 <2.26000 <0.008 <0.93000 <0.10 <0.002 <0.003 <0.002 <0.79E-04 <0.008 <0.48000 	DNQ	1.4376 5.1947 1.3300 67.0480 150 1.3480 4.9869 1.1848	2.0856 7.3406 34.1290 67.0480 340 2.0286 7.0469 30.4035	1.2491 1.06169	0.16289 5.1947 1.3300 67.0480 150 0.15274 4.9869 1.1848 0.77 66.1093	1.06297 7.3406 34.1290 67.0480 340 1.0339 7.0469 30.4035 1.40 65.5729	1.1646 0.98992	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	30 <0.05 50.4 0.5 0.0 0.1 52.1 104.0 <0.0050 0.0	1	0.0052 0.014	0.022		2.72 230 ≥ 20 0.0052 0.014	6.52 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Informia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

						2	003			
	March		May		June		July		August	Octob
Time	9:40		12:18		10:55		10:52		8:05	11:51
In situ Parameters										
Water Temperature (°C)	3.30		8.25		9.83		10.27		8.01	7.87
Dissolved Oxygen (mg/L)	11.14		10.49	-	8.83		9.24		12.15	10.87
Specific Conductance (μmhos/cm)	7.89		51		7.96		93		93 8.08	101
pH Turbidity (NTU)	2.8		7.87 0.1		0.5		8.45 0.1		0.0	8.06
Depth (M)	0.1		1.0		1.0		1.0		1.0	1.0
• • •	0.1		1.0		1.0		1.0		1.0	1.0
Analytical Parameters										
Total Coliform (MPN/100 mL)	26		NS		NS		NS		NS	1
Fecal Coliform (MPN/100 mL)	<2		NS		NS		NS		NS	
recar comorni (wii 14/100 mil)	\Z		110		145		145		110	
Total Metals:										
Arsenic (µg/L)	< 0.10		NS		NS		NS		NS	< 0.10
Barium (mg/L)	0.0015		NS		NS		NS		NS	0.001
Cadmium (µg/L)	< 0.002		NS		NS		NS		NS	< 0.002
Copper (μg/L)	0.077		NS		NS		NS		NS	< 0.003
Lead (μg/L)		NQ	NS		NS		NS		NS	< 0.002
Manganese (μg/L)	0.66		NS		NS		NS		NS	0.12
Silver (μg/L)	<0.008		NS NS		NS NS		NS NS		NS NS	<0.008
Zinc (μg/L)	0.15		NS		NS		NS		NS	<0.0.
Dissolved Metals:										
Arsenic (µg/L)	< 0.10		NS		NS		NS		NS	< 0.10
Barium (mg/L)	0.0014		NS		NS		NS		NS	0.0013
Cadmium (µg/L)	< 0.002		NS		NS		NS		NS	< 0.002
Copper (µg/L)	0.044		NS		NS		NS		NS	< 0.003
Iron (mg/L)	0.006		NS		NS		NS		NS	< 0.0020
Lead (μg/L)	< 0.002		NS		NS		NS		NS	< 0.002
Manganese (μg/L)	0.19		NS		NS		NS		NS	< 0.003
Mercury (μg/L)	0.00172		NS		NS		NS		NS	0.000120
Silver (μg/L)	< 0.008		NS		NS		NS		NS	< 0.008
Zinc (µg/L)	0.16		NS	-	NS		NS		NS	< 0.02
Ammonia - Total (mg/L)	< 0.05		NS		NS		NS		NS	< 0.0
Total Hardness, as CaCO3 (mg/L)	24.5		NS		NS		NS		NS	49
Chloride (mg/L)	0.26		NS		NS		NS		NS	0.3
Fluoride (mg/L)	0.02	J	NS		NS		NS		NS	0.032
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.1100		NS		NS		NS		NS	0.0546
Alkalinity - Total (mg/L)	30		NS		NS		NS		NS	44.3
Total Dissolved Solids (mg/L)	46		NS		NS		NS		NS	70
Total Suspended Solids (mg/L)	1.0		NS		NS		NS		NS	<1.0
Total Phosphorous (mg/L)	< 0.03		NS		NS		NS		NS	< 0.01:
Orthophosphate (mg/L)	0.0138		NS		NS		NS		NS	0.0242
Total Calcium (mg/L)	5.51		NS		NS		NS		NS	9.6
Total Magnesium (mg/L) Total Sodium (mg/L)	2.65		NS NS		NS NS		NS NC		NS NS	3.50
Dissolved Calcium (mg/L)	1.78 5.52		NS NS		NS NS		NS NS		NS NS	9.5
Dissolved Calcium (mg/L) Dissolved Magnesium (mg/L)	2.67		NS NS		NS NS		NS NS		NS NS	5.20
Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	1.78		NS NS		NS		NS NS		NS	3.5
Total Boron (mg/L)	<0.10		NS		NS		NS		NS	<0.1
Cyanide (mg/L)	<0.0050		NS		NS		NS		NS	<0.005
Molybdenum (mg/L)	< 0.0050		NS		NS		NS		NS	< 0.005
PCBs										
Aroclor 1016 (μg/L)	<1.0		NS		NS		NS		NS	<0.3
Aroclor 1221 (µg/L)	<1.0		NS		NS		NS		NS	<0.
Aroclor 1232 (µg/L)	<1.0		NS		NS		NS		NS	<0.
Aroclor 1242 (μg/L)	<1.0		NS		NS		NS		NS	<0.
Aroclor 1248 (μg/L)	<1.0		NS		NS		NS		NS	<0.
Aroclor 1254 (μg/L)	<1.0		NS		NS		NS		NS	<0.
Aroclor 1260 (μg/L)	<1.0		NS		NS		NS		NS	<0.
Aroclor 1268 (μg/L)	<1.0		NS		NS		NS		NS	<0.
I = Estimated concentration 1-1	porting limit (BT)) ond -1	201/0 th = '	hod d-	nation limit (1	(Di) d	no MDI :- L-	d cn -	totistics1	
J = Estimated concentration below the rep calculation, the RL is normally set to 5 to						ィレレ), th	IE IVIDL 18 base	u on a s	tatistical	
pearculation, the KL is normally set to 5 to							lua listad a- 1-	es then 4	ho DI	
DNQ = Detected above MDL and below	DI but not	tifical "	Morino D-U							

		Ctatiatica	
		Statistics	
	MAX	MIN	AVG
	10.27	3.30	7.42
	11.14 101.00	9.24 51.00	10.44 75.75
	8.45	7.87	8.07
	2.80	0.00	0.75
	1.00	0.10	0.78
	^	0	#DIV/0!
	0.0017	0.0015	#DIV/0! 0.0016
	0.0017	0.0015	#DIV/0!
	0.077	0.077	0.077
	0	0	#DIV/0!
	0.66	0.12	0.39
	0.15	0.15	#DIV/0! 0.15
	0.15	0.13	0.15
	0	0	#DIV/0!
	0	0	#DIV/0!
	0.044		0.044
	0.006	0.006	0.006
-	0	0	#DIV/0!
	0.00172	0.000126	0.000923
	0.00172	0.000126	#DIV/0!
	0.16	0.16	0.16
	0	0	#DIV/0!
	49.5	24.5	#DIV/0!
	0.32	0.26	0.29
	2.1.	0.0510	0.0000
	0.11 44.8	0.0546 30.4	0.0823 37.6
	44.8 76	30.4 46	37.6 61
	1	1	1
	0	0	#DIV/0!
	0.0242	0.0138	0.019
	9.66 5.11	5.51 2.65	7.585 3.88
	3.5	1.78	2.64
	9.55	5.52	7.535
	5.26	2.67	3.965
	3.59	1.78	2.685
	-		
		l .	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	March	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended ² Quality Criteria	Cal Dept.	of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	nwater Aquatio	Life Protection	Fresh	water Aquatio	Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	9:40 3.30 11.14 58 7.89 2.8		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L) Zinc (µg/L)	<0.10 0.00150 <0.002 0.07700 <0.01 0.66000 <0.008 0.15000 <0.10 <0.002 0.04400 <0.002 1.72E-03 <0.008 0.16000	DNQ	0.8160 2.8046 0.5309 36.3879 150 0.7897 2.6924 0.5288	0.9244 3.7202 13.6251 36.3879 340 0.9270 3.5714 13.5698	0.3612 0.30703	0.09545 2.8046 0.5309 36.3879 150 0.09239 2.6924 0.5288 0.77 35.8784	0.51057 3.7202 13.6251 36.3879 340 0.5120 3.5714 13.5698 1.40 35.5873	0.3368 0.28628	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	<2 <0.05 24.5 0.3 0.0 0.1 30.4 46.0 <0.0050 0.0	1	0.0052 0.014	0.022		2.84 230 ≥ 20 0.0052 0.014	6.89 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	May	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Jater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	12:18		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	8.25 10.49												>7		
Passived oxygen (hig/b) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	51 7.87 0.1							6.5-9.0		900 5			6.5-8.5		

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	June	Flag			s Criteria (USEPA) 1	Ami	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Vater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	10:55 9.83 8.83 59 7.96 0.5		CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	July	Flag			es Criteria (USEPA) 1	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:52														
In situ Parameters															
Water Temperature (°C)	10.27														
Dissolved Oxygen (mg/L)	9.24												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.45							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC1 (Old Cow Creek above diversion)	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USI Jater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	8:05		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm)	8.01 12.15 93									900			>7		
pH (Standard Units) Turbidity (NTU)	8.08 0.0							6.5-9.0		5			6.5-8.5		

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC1 (Old Cow Creek above diversion)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (CDPH) 3		EPA	RWQCB 4 Basin Plan	CTR (Human Health]
			Fresh	•	Life Protection	Fresh	•	Life Protection			ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	7.87 10.87 101 8.06 0.0		CCC	CMC	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6	<0.10 0.00170 <0.002 <0.003 <0.002 0.12000 <0.008 <0.02	DNQ	66.0321	2.0436 7.2170 33.3551 66.0321	1.2109	0.16073 5.1153 1.2998 66.0321	1.04367 7.2170 33.3551 66.0321	1.1291	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1.300	
Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Zinc (mg/L)	<0.10 <0.002 <0.003 <0.002 1.26E-04 <0.008 <0.02		150 1.3301 4.9107 1.1613	340 1.9893 6.9283 29.8017	1.02929	150 0.15083 4.9107 1.1613 0.77 65.1077	340 1.0159 6.9283 29.8017 1.40 64.5794	0.95971							
Additional Analytical Parameters Fecal Coliform (MPN/100mL) 10 Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	2 <0.05 49.5 0.3 0.0 0.1 44.8 76.0	J				2.23 230 ≥ 20	5.01 860		2 10	250 500	4 10	250 2	200/400		
Cyanide (mg/L) PCBs (mg/L)	<0.0050		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	300	0.2 0.5	500		0.7 0.00017	220 0.00017

I = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

				2003		
		Mari	1	Lib	À	
	March	May	June	July	August	October
Time	SS	15:30	12:28	12:30	10:02	7:40
In situ Parameters						
Water Temperature (°C)	NS	11.55	12.63	16.64	12.55	10.4
Dissolved Oxygen (mg/L)	NS	9.98	9.48	8.63	9.97	9.63
Specific Conductance (µmhos/cm)	NS	54	63	97	97	103
pH	NS	7.73	7.94	8.17	8.18	7.89
Turbidity (NTU)	NS	0.7	1.7	0.0	0.0	0.0
Depth (M)	SN	1.0	1.0	1.0	1.0	1.0

1.00	0.70	8.17	103.00	9.98	16.64	MAX						
1.00						MIN		Statistics				
	0.23					Þ						

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	March	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended ² Quality Criteria	Cal Dept. Health (CDPH) 3	USE		RWQCB ⁴ Basin Plan	CTR (Human Health	
-			Fresh	water Aquation	c Life Protection	Fresh	water Aquation	Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	May	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Vater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	15:30		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	11.55 9.98 54 7.73 0.7							6.5-9.0		900			>7 6.5-8.5		

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	June	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Vater Standards	PA.	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	12:28		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL	Objectives	(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	12.63 9.48												> 7		
pH (Standard Units) Turbidity (NTU)	63 7.94 1.7							6.5-9.0		900 5			6.5-8.5		

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California *Water Quality Granted Toxics Rule*]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	July	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, ,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			ссс	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	12:30														
In situ Parameters															
Water Temperature (°C)	16.64														
Dissolved Oxygen (mg/L)	8.63												>7		
Specific Conductance (mmhos/cm)	97									900					
pH (Standard Units)	8.17							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

OC2 (Old Cow Creek above confluence with North Canyon Creek)	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USF ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:02														
In situ Parameters															
Water Temperature (°C)	12.55														
Dissolved Oxygen (mg/L)	9.97												>7		
Specific Conductance (mmhos/cm)	97									900					
pH (Standard Units)	8.18							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria Shaded cells represent exceedances of the criteria CCC = Continuous concentration (4-day average)

- CCC = Continuous concentration (1-day average)

 CMC = Maximum concentration (1-hour average)

 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.

 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

 NS = Constituent not sampled for during monitoring program

OC2 (Old Cow Creek above confluence with North Canyon Creek)	October	Flag			s Criteria (USEPA) 1	An	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (CDPH) ³	USE		RWQCB 4 Basin Plan	CTR (Human Health	, ,,
-			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:40														
In situ Parameters															
Water Temperature (°C)	10.44														
Dissolved Oxygen (mg/L)	9.63												>7		
Specific Conductance (mmhos/cm)	103									900					
pH (Standard Units)	7.89							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- L. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131) 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
 Constituent not sampled for during monitoring program

March May Jine Jily August							
C).				20	003		
D		March	May	June	July	August	Oct
CD. 6.40 10.64 10.64 12.57 16.08 12.46 ED. 16.62 16.33 2.29 16.12 11.07 Ing. 16.62 16.33 2.29 18.12 11.07 15.75 2.75 2.23 2.96 18.12 11.07 15.75 2.75 2.22 2.96 2.21 8.16 7.75 7.72 7.96 2.21 8.16 7.75 7.82 7.96 2.21 8.16 7.75 7.82 7.96 2.21 8.16 7.75 7.82 7.96 8.21 8.18 8.1 7.73 7.96 8.21 8.18 8.2 7.83 8.83 8.83 8.83 8.83 10.04.1 8.83 8.83 8.83 8.83 8.83 8.83 10.04.2 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83	Time	12:45	13:36	11:28	11:21	8:54	13:
C)	In situ Parameters						
(chinboxem) 1662 1633 759 817 1107 1107 1662 1634 179 1645 179 1645 179 1645 179 1645 179 179 179 179 179 179 179 179 179 179	Water Temnerature (°C)	6.40	10.61	12.57	16.05	12.46	13.0
(unaboscon)	Dissolved Oxygen (mg/L)	10.62	10.33	9.29	8.12	11.07	9.
100 mL)	Specific Conductance (µmhos/cm) pH	7.75	7.82	7.96	106 8.21	103 8.16	8.1
100 m.L.) 220	Turbidity (NTU)	5.8	2.2	5.6	2.5	0.8	0
100 mL) 220	Analytical Parameters	- c.c	1.0	1:0	1.0		
A-0.10 NS	Total Coliform (MPN/100 mL)	220	SN	NS	NS	NS	5(
A.0.10 NS	Fecal Coliform (MPN/100 mL)		SN	NS	SN	NS	2.
0.0061 NS NS NS NS NS NS NS N	Arsenic (ug/L)	<0.10	NS	NS	NS	NS	0.
CO3 (mg/L)	Barium (mg/L)	0.0061	NS	NS	NS	NS	0.0
A466 NS NS NS NS NS	Copper (µg/L)	0.384	NS	NS 3	NS	NS NS	0.1
A0,008 NS NS NS NS	Lead (µg/L) Manganese (µg/L)	0.063	SN SN	N N	NS NS	NS	6. 0.0
A-0.10	Silver (µg/L)	<0.008	SNS	SS	NS	NS	<0.00
A0,10	Zilic (µg/L)	0.03	20	20	20	20	\0.0.
0.0043	Dissolved Metals: Arsenic (µg/L)	<0.10	SN	SS	NS	NS	0.3
COLOUZ NS	Barium (mg/L)	0.0043	NS	SN	NS	NS	0.003
0.011	Cadmium (µg/L) Copper (µg/L)	0.162	NS NS	N N	NS	NS	0.0
COLUNIZ NS	Iron (mg/L)	0.011	NS	NS	NS	NS	0.009
CO3 (mg/L)	Manganese (μg/L)	0.72	NS	SS	SN	NS	1.
L.)	Mercury (µg/L)	0.00151	Z Z	N N	N N	N N	<0.0>
(L) <0.05 NS NS NS NS CCO3 (mg/L) 27.4 NS	Zinc (µg/L)	0.25	NS	NS	NS	NS	<0.0
Coording(L)	Ammonia - Total (mg/L)	<0.05	NS	NS	NS	NS	<0.1
D.02	Chloride (mg/L)	0.36	NS	NS 3	NS	NS	0
A	Fluoride (mg/L) Nitrate as NO3 (mo/L) + Nitrate (mo/L)	0.02	SN	SN	SN	NS	0.03
s (mg/L) 69 NS NS NS NS g/L) -6.6 NS	Alkalinity - Total (mg/L)	33	SN	SS	NS	NS	48
Action below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statisticial Action below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statisticial Action below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statisticial Action below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statisticial Action below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statisticial Action below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL), the MDL is based on a statisticial Action below the method detection limit (MDL) Action below the method detection li	Total Dissolved Solids (mg/L) Total Suspended Solids (mg/L)	6.6	N S	N S	N N	NS NS	
Country Coun	Total Phosphorous (mg/L)	<0.03	NS	NS	NS	NS	0.020
	Total Calcium (mg/L)	6.76	NS	NS S	NS	NS	10.0
g(L) 6.67 NS NS <th< td=""><td>Total Magnesium (mg/L) Total Sodium (mg/L)</td><td>3.01</td><td>SN SN</td><td>N S</td><td>NS SN</td><td>NS NS</td><td>4.5.</td></th<>	Total Magnesium (mg/L) Total Sodium (mg/L)	3.01	SN SN	N S	NS SN	NS NS	4.5.
Cling(L) 2.94	Dissolved Calcium (mg/L)	6.67	NS	SSN	NS	NS	10.
Co.10	Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	2.37	NS N	Z S	N N N	NS NS	.2
COUDSO	Total Boron (mg/L)	<0.10	SNS	SS	NS	NS	200
Interpretation below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statistical	Molybdenum (mg/L)	<0.0050	NS	NS 3	NS 3	NS	<0.00
Color Colo	PCBs						
Col. NS	Aroclor 1016 (µg/L)	<1.0	SN	SN	NS	NS	>>
C1.0	Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	NS NS	Z Z	NS NS	NS	<u>^</u> _
C1.0	Aroclor 1242 (μg/L)	\$1.0	NS NS	N S	NS NS	NS NS	\ \ \ \
<1.0	Aroclor 1254 (119/L.)	<1.0	NS	NS	NS	NS	<u>^</u>
tration below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statistical	THE COLOR LEG - (MED L)	<1.0	SN	N N	NS	NS	2 4
Estimated concentration below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a	Aroclor 1260 (µg/L) Aroclor 1268 (µg/L)	/1.0		Š	100	1	
	Aroclor 1260 (µg/L) Aroclor 1268 (µg/L)					6.5.	

	0.557 0.0571 48.7 90 6.6 0.0202 0.0361 10 5.21 4.64 10.1 5.16	0.22 0.079 0 0.384 0.063 6.18 0 0.65 0.065 0.23 0.23 0.001 0 0.23 0.00151 0 0.00151 0 0.25	MAX 16.05 10.62 109.00 8.21 5.80 1.00
	0.36 0.045 32.7 69 1.5 0.0202 0.0211 6.76 3.01 2.39 6.67 2.94	0.000	Stati
		0.22 0.04255 #DIV/0! 0.0415 5.32 #DIV/0! 0.65 0.65 0.196 0.196 0.196 0.01045 #DIV/0! 0.001006 #DIV/0! 0.23	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	March	Flag		Toxics Rule	s Criteria (USEPA) ¹			Recommended ² Duality Criteria	Cal Dept Health (of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
1 owellouse)		Ĭ	Fresh	water Aquation	Life Protection	Fresh	water Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	12:45 6.40 10.62 69 7.75 5.8		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Copper (µg/L) Lead (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L) Zinc (µg/L)	<0.10 0.00610 <0.002 0.38400 0.06300 4.46000 <0.008 0.65000 <0.10 <0.002 0.16200 <0.002 1.51E-03 <0.0008 0.25000		0.8909 3.0859 0.6122 40.0057 150 0.8581 2.9625 0.5997	1.0487 4.1338 15.7104 40.0057 340 1.0468 3.9684 15.3906	0.4379 0.37218	0.10370 3.0859 0.6122 40.0057 150 0.09988 2.9625 0.5997 0.77 39.4457	0.57207 4.1338 15.7104 40.0057 340 0.5710 3.9684 15.3906 1.40 39.1256	0.4083 0.34702	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) Pluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (μg/L)	8 <0.05 27.4 0.4 0.0 0.0 32.7 69.0 <0.0050 0.0		0.0052 0.014	0.022		3.38 230 ≥ 20 0.0052 0.014	8.85 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- CMC = Maximum concentration (1-hour average)
- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	May	Flag			c Life Protection	Aml	oient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (- /	USE Vater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:36														
In situ Parameters															
Water Temperature (°C)	10.61														
Dissolved Oxygen (mg/L)	10.33												>7		
Specific Conductance (mmhos/cm)	61									900					
pH (Standard Units)	7.82							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	June	Flag			es Criteria (USEPA) 1	Ami	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (CDPH) ³	USE		RWQCB 4 Basin Plan	CTR (Human Health	
			Fresh	water Aquati	c Life Protection	Freshv	vater Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Гіте	11:28														
n situ Parameters															
Water Temperature (°C)	12.57														
Dissolved Oxygen (mg/L)	9.29												>7		
Specific Conductance (mmhos/cm)	70									900					
oH (Standard Units)	7.96							6.5-9.0					6.5-8.5		
Turbidity (NTU)	5.6									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Valifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	July	Flag			es Criteria (USEPA) 1	Ami	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE Jater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	11:21		ccc	СМС	Instantaneous Max	ccc	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL			(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	16.05 8.12 106 8.21 2.5							6.5-9.0		900			>7 6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC3 (Old Cow Creek above Kilrac Powerhouse)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USI ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:54														
In situ Parameters															
Water Temperature (°C)	12.46														
Dissolved Oxygen (mg/L)	11.07												>7		
Specific Conductance (mmhos/cm)	103									900					
pH (Standard Units)	8.16							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC3 (Old Cow Creek above Kilrac Powerhouse)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	, , ,
			Fresh	water Aquatio	Life Protection	Fresh	water Aquatic	Life Protection			ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	13:02 13.04 9.42 109 8.07 0.4		ccc	CMC	Instantaneous Max	ccc	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Cadmium (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L)	0.22000 0.07900 <0.002 0.17400 0.02000 6.18000 <0.008 <0.02 0.23000 0.09900 0.23000 <0.002 5.01E-0.4 <0.008		1.4174 5.1153 1.2998 66.0321 150 1.3301 4.9107 1.1613	2.0436 7.2170 33.3551 66.0321 340 1.9893 6.9283 29.8017	1.2109	0.16073 5.1153 1.2998 66.0321 150 0.15083 4.9107 1.1613 0.77	1.04367 7.2170 33.3551 66.0321 340 1.0159 6.9283 29.8017 1.40	1.1291	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Silver (mg/L) Zinc (mg/L)	<0.008 <0.02		65.1077	64.5794	1.02929	65.1077	64.5794	0.959/1							
Additional Analytical Parameters Fecal Coliform (MPN/100mL) 10 Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L)	240 <0.05 49.5					2.19	4.92						200/400		
Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	0.6 0.0 0.1 48.7 90.0 <0.0050 0.0		0.0052 0.014	0.022		230 ≥ 20 0.0052 0.014	0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500		0.7 0.00017	220 0.00017

I = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

	1	K	F1 (Kilrac F	'orebay)	1 1	т		т т	
					2003				
	M1		Mari	T		Inde	H	August	0-1
+	March	-++	May	June		July	\vdash	August	Octo
Time	14:00		11:45	10:30		10:31		7:40	12:20
In situ Parameters									
Water Temperature (°C)	4.51		8.50	11.99		13.82	1	14.14	11.7:
Dissolved Oxygen (mg/L)	10.77		11.03	8.68		8.49		8.76	9.4
Specific Conductance (µmhos/cm)	54		52	59		92		93	10
pH	8.00		7.77	7.90		8.44		8.68	8.2
Turbidity (NTU)	1.5		<0.1	0.9		0.8		2.4	0
Depth (M)	1.1		1.0	1.0		1.0		1.0	1.0
Analytical Parameters									
Total Coliform (MPN/100 mL)	80		NS	NS		NS		NS	130
Fecal Coliform (MPN/100 mL)	<2		NS	NS		NS		NS	:
Total Metals:									
Arsenic (µg/L)	< 0.10		NS	NS		NS		NS	<0.1
Barium (mg/L)	0.0019		NS	NS		NS		NS	0.002
Cadmium (µg/L)	< 0.002		NS	NS		NS		NS	< 0.00
Copper (μg/L) Lead (μg/L)	0.088 <0.01	DNO	NS NS	NS NS		NS NS	\vdash	NS NS	<0.00
Manganese (μg/L)	1.44	אייע	NS NS	NS		NS NS	H	NS NS	2.1
Silver (µg/L)	< 0.008		NS	NS		NS		NS	< 0.00
Zinc (µg/L)	0.19		NS	NS		NS		NS	< 0.0
Dissolved Metals:							H		++
Arsenic (µg/L)	< 0.10		NS	NS		NS		NS	<00.10
Barium (mg/L)	0.0015		NS	NS		NS		NS	0.0024
Cadmium (µg/L)	< 0.002		NS	NS		NS		NS	< 0.00
Copper (μg/L) Iron (mg/L)	0.088		NS NS	NS NS		NS NS	1	NS NS	0.04 <0.00
Lead (μg/L)	<0.004		NS	NS		NS		NS	<0.00
Manganese (μg/L)	0.84		NS	NS		NS		NS	1.3
Mercury (μg/L)	0.00137		NS	NS		NS		NS	0.00027
Silver (µg/L)	< 0.008		NS NS	NS		NS	-	NS	<0.00
Zinc (µg/L)	0.19		NS	NS		NS		NS	< 0.0
Ammonia - Total (mg/L)	< 0.05		NS	NS		NS		NS	< 0.0
Total Hardness, as CaCO3 (mg/L)	22.5		NS	NS		NS		NS	49.
Chloride (mg/L) Fluoride (mg/L)	0.27 0.02 J		NS NS	NS NS		NS NS		NS NS	0.3
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0453		NS	NS		NS		NS	0.058
Alkalinity - Total (mg/L)	28		NS	NS		NS		NS	58.
Total Dissolved Solids (mg/L)	44		NS	NS		NS		NS	7
Total Suspended Solids (mg/L)	<1.0 <0.03		NS NS	NS NS		NS NS	1	NS NS	5. <0.01
Total Phosphorous (mg/L) Orthophosphate (mg/L)	0.0122		NS NS	NS NS		NS NS		NS NS	0.018
Total Calcium (mg/L)	5.31		NS	NS		NS		NS	9.4
Total Magnesium (mg/L)	2.52		NS	NS		NS		NS	5.1
Total Sodium (mg/L)	1.73		NS	NS		NS	\sqcup	NS	3.5
Dissolved Calcium (mg/L) Dissolved Magnesium (mg/L)	5.04 2.48		NS NS	NS NS		NS NS	\vdash	NS NS	9.5
Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	1.71		NS	NS		NS	H	NS	3.5
Total Boron (mg/L)	< 0.10		NS	NS		NS		NS	< 0.1
Cyanide (mg/L)	<0.0050		NS	NS		NS		NS	< 0.005
Molybdenum (mg/L)	< 0.0050		NS	NS		NS	\vdash	NS	<0.00
PCBs				++			\vdash		+
Aroclor 1016 (μg/L)	<1.0		NS	NS		NS		NS	<0.
Aroclor 1221 (µg/L)	<1.0		NS	NS		NS		NS	<0.
Aroclor 1232 (μg/L)	<1.0		NS	NS		NS	\sqcup	NS	<0.
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0 <1.0		NS NS	NS NS		NS NS	\vdash	NS NS	<0
Aroclor 1248 (μg/L) Aroclor 1254 (μg/L)	<1.0		NS	NS		NS	H	NS	<0.
Aroclor 1260 (µg/L)	<1.0		NS	NS		NS		NS	<0.
Aroclor 1268 (µg/L)	<1.0		NS	NS		NS		NS	<0.
							\sqcup		
J = Estimated concentration below the rep	Orting limit (DI	() and abou	e the method d	etection limit (MD)L) the MDI	is hased on a	statistics	al	+
calculation, the RL is normally set to 5 to					,, aic wide	is oused the	Saustica		+
DNQ = Detected above MDL and below I	RL, but not qua	ntified (Ma). Value liste	l as less than	the RL.		
NS = Constituent not sampled for during i						T	1 [1 1

	Ctatiatiaa	
	Statistics	
MAX	MIN	AVG
13.82 11.03	4.51 8.49	9.65 9.94
100.00	52.00	74.50
8.44	7.77	8.12
1.50 1.10	0.40 1.00	0.90
1.10	1.00	1.00
		-
0.0038	0.0019	#DIV/0! 0.00235
0.0028	0.0019	#DIV/0!
0.088	0.088	0.088
0.005	0.005	0.005
2.18	1.44	1.81 #DIV/0!
0.19	0.19	0.19
0	0	#DIV/0!
0.088	0.047	#DIV/0! 0.0675
0.0064	0.0064	0.0073
0	0	#DIV/0!
0.00137	0.000277	0.000824
0.00137	0.000277	#DIV/0!
0.19	0.19	0.19
0	0	#DIV/0!
49	22.5	35.75
0.33	0.27	0.3
0.0587	0.0453	0.052
58.8		43.5
76	44	60
5.8	5.8 0	5.8 #DIV/0!
0.0188	0.0122	#0.0155
9.41	5.31	7.36
5.12 3.56	2.52 1.73	3.82
9.5	5.04	2.645 7.27
5.13	2.48	3.805
3.56	1.71	2.635

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	March	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended ² Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
		Ū	Fresh	water Aquatio	Life Protection	Fresh	water Aquatio	c Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	14:00 4.51 10.77 54 8.00 1.5		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (µg/L) Cadmium (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Cadmium (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L)	<0.10 0.00190 <0.002 0.08800 <0.01 1.44000 <0.008 0.19000 <0.10 <0.002 0.08800 <0.002 1.37E-03 <0.008 0.19000	DNQ	0.7632 2.6078 0.4764 33.8548 150 0.7414 2.5035 0.4804	0.8397 3.4334 12.2253 33.8548 340 0.8451 3.2961 12.3274 33.1100	0.3120 0.26520	0.08962 2.6078 0.4764 33.8548 150 0.08706 2.5035 0.4804 0.77 33.3809	0.46823 3.4334 12.2253 33.8548 340 0.4712 3.2961 12.3274 1.40 33.1100	0.2909 0.24727	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	<2 <0.05 22.5 0.3 0.0 0.0 28.2 44.0 <0.0050 0.0	J	0.0052 0.014	0.022		2.43 230 ≥ 20 0.0052 0.014	5.62 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	May	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:45														
In situ Parameters															
Water Temperature (°C)	8.50														
Dissolved Oxygen (mg/L)	11.03												>7		
Specific Conductance (mmhos/cm)	52									900					
pH (Standard Units)	7.77							6.5-9.0					6.5-8.5		
Turbidity (NTU)	< 0.1									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	June	Flag			s Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (0		USE Vater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	10:30 11.99 8.68 59 7.90 0.9		CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	July	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Fresh	water Aquat	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:31														
In situ Parameters															
Water Temperature (°C)	13.82														
Dissolved Oxygen (mg/L)	8.49												>7		
Specific Conductance (mmhos/cm)	92									900					
pH (Standard Units)	8.44							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (hifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

KF1 (Kilrac Forebay)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria ic Life Protection	Cal Dept. Health (CDPH) ³	USE Vater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL	Objectives	(water + organism consump)	(aquatic org. consump)
Time	7:40			Circ	713/41141100110 171410		Cinc	Thorametricono Francis	1 MCE	2 11102	1 1102	2 11102		(water + organism consump)	(uquane org. consump)
In situ Parameters															
Water Temperature (°C)	14.14														
Dissolved Oxygen (mg/L)	8.76												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.68							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.4									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

KF1 (Kilrac Forebay)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q	Recommended 2 uality Criteria Life Protection	Cal Dept. Health (USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health	0 30-day average) Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	12:20 11.75 9.48 100 8.28 0.4		ccc	CMC	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Cadmium (mg/L) Cadmium (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L)	<0.10 0.00280 <0.002 <0.003 0.00500 2.18000 <0.002 <0.010 <0.002 0.04700 <0.002 2.77E-04 <0.008	DNQ	1.4062 5.0711 1.2831 65.4666 150 1.3202 4.8683 1.1483	2.0204 7.1483 32.9268 65.4666 340 1.9675 6.8624 29.4677	1.1900 1.01148	0.15953 5.0711 1.2831 65.4666 150 0.14977 4.8683 1.1483 0.77	1.03296 7.1483 32.9268 65.4666 340 1.0059 6.8624 29.4677 1.40	1.1095 0.94310	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	2 <0.05 49.0 0.3 0.0 0.1 58.8 76.0 <0.0050 0.0	J	0.0052 0.014	0.022		1.57 230 ≥ 20 0.0052 0.014	3.27 860	3,5,00	2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

I = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

	OC4 (Old Cow Creek below Kilrac Powerhouse)	OW CIECV DEIOW I				
			20	M3		
						\prod
	March	May	June	July	August	October
Time	13:15	13:35	11:38	11:32	8:58	13:20
In situ Parameters						
Water Temperature (°C)	4.40	8.89	11.00	12.86	11.48	
Dissolved Oxygen (mg/L)	10.89	10.50	9.65		9.69	Ī
Specific Conductance (µmhos/cm)	56 7 95	54 7 73	7 84	94	8 16	102 8 74
Turbidity (NTU)	3.4	0.6	1.8	1.3	0.0	
Depth (M) Analytical Parameters	0.4	1.0	1.0	1.0	1.0	
Total Californ (MPN/100 ml)	130	NIG	NG	NG	NIC	
Fecal Coliform (MPN/100 mL)	\$ 2	NS NS	NS S	NS N	Z Z	
Total Metals:						
Arsenic (µg/L)	<0.10	SN	NS	NS	SN	2 4
Cadmium (µg/L)	<0.002	NS NS	NS S	NS NS	Z Z	<0.0
Copper (µg/L)	0.158	NS	NS	NS	NS	<0.
Manganese (μg/L)	2.08	NS S	NS	NS	NS	2.37
Zinc (μg/L)	0.27	NS S	NS S	NS NS	Z Z	<0.012
Dissolved Metals:						
Arsenic (µg/L)	<0.10	NS	NS	NS	NS NS	2 4
Cadmium (µg/L)	<0.002	N N	NS S	NS 23	NS N	0.0
Copper (µg/L)	0.077	NS	NS	NS	SS	0.037
Iron (mg/L)	<0.002	Z Z	NS S	Z Z	Z Z	< 0.0024
Manganese (µg/L)	0.75	NS	NS	NS	NS NS	0 000
Silver (µg/L)	<0.008	NS S	NS S	NS 23	N S	<0
Zinc (µg/L)	0.16	NS	NS	NS	NS	<0.02
Ammonia - Total (mg/L)	<0.05	Ng	NS	NS	N N	Δ
Chloride (mg/L)	0.28	NS	NS	NS	NS	
Fluoride (mg/L) Nitrate as NO3 (mg/L) + Nitrite (mg/L)	0.019 J	NS SN	NS	SN	SN SN	0.028
Alkalinity - Total (mg/L)	27	NS	NS	NS	NS	
Total Dissolved Solids (mg/L) Total Suspended Solids (mg/L)	72	NS NS	NS SN	SN SN	Z Z	
Total Phosphorous (mg/L)	<0.03	NS	NS	NS	SN	6
Orthophosphate (mg/L) Total Calcium (mg/L)	5.57	Z Z	Z Z	N N	N N	0.0
Total Magnesium (mg/L)	2.60	NS	NS	NS	SS	5.17
Dissolved Calcium (mg/L)	5.44	NS NS	NS S	NS NS	Z Z	
Dissolved Magnesium (mg/L)	2.56	NS	NS	NS	N N	
Total Boron (mg/L)	<0.10	NS 3	NS	NS 23	Z Z	Δ.
Cyanide (mg/L)	<0.0050	SN	NS	NS	SNS	<0.0
Molybdenum (mg/L)	<0.0050	Z	Z	Z	Z	<0.0
PCBs	7 0	Z ₀	Ng	N	N	
Aroclor 1221 (μg/L)	<1.0	NS 3	NS 3	NS 3	NS 3	Ī
Amorlor 1929 (110/I)	<1.0	NS	NS	NS	SN	<0.2
Aroclor 1232 (Hg/L)	<1.0	NS 3	NS S	NS	NS 23	Ī
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L)	<1.0	Z Z	NS S	N N	X X	
Aroclor 1262 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1254 (µg/L) Aroclor 1260 (µg/L) Aroclor 1268 (µg/L)						
Aroclor 1242 (µgL) Aroclor 1248 (µgL) Aroclor 1254 (µgL) Aroclor 1254 (µgL) Aroclor 1260 (µgL) Aroclor 1268 (µgL)						
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L) Aroclor 1248 (μg/L) Aroclor 1254 (μg/L) Aroclor 1254 (μg/L) Aroclor 1260 (μg/L) Aroclor 1260 (μg/L) Aroclor 1268 (μg/L)	porting limit (RL) and a	above the method detec	ction limit (MDL), th	limit (MDL), the MDL is based on a statistical	Statistical	

			3.57 9.75 5.23 3.63	0.0228 9.83 5.17	0.0696 46.5 77 1.5	0 50 0.34	0.00175 0 0.16	0.003 0.077 0.014 0	0	0.158 0.022 2.37 0.012 0.012	0.0028	1.00	8.32 3.40	MAX 12.86 10.89 102.00		
					0.0555 27.3 72 1.4	24.5 0.28	0.00	0.003 0.037 0.0024 0		0.158 0.015 2.08 0.012 0.012				MIN 4.40 8.95 54.00	Statistics	
			2.695 7.595 3.895 2.71		0.06255 36.9 74.5 1.45	#DIV/0! 37.25 0.31		0.003 0.057 0.0082 #DIV/0i		0.158 0.0185 2.225 0.012 0.012				AVG 9.01 10.06 76.50		

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	March	Flag	California	Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria		of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
1 owelliouse)		Ů	Fresh	water Aquati	c Life Protection	Fresl	hwater Aquatic	Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	13:15 4.40 10.89 56 7.95 3.4		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Copper (µg/L) Lead (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.10 0.00280 <0.002 0.15800 0.02200 2.08000 <0.008 0.27000 <0.10 <0.002 1.75E-03 <0.002 0.16000 0.16000		0.8160 2.8046 0.5309 36.3879 150 0.7897 2.6924 0.5288	0.9244 3.7202 13.6251 36.3879 340 0.9270 3.5714 13.5698	0.3612 0.30703	0.09545 2.8046 0.5309 36.3879 150 0.09239 2.6924 0.5288 0.77	0.51057 3.7202 13.6251 36.3879 340 0.5120 3.5714 13.5698 1.40 35.5873	0.3368 0.28628	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	<2 <0.05 24.5 0.3 0.0 0.1 27.3 72.0 <0.0050 0.0	1	0.0052 0.014	0.022		2.61 230 ≥ 20 0.0052 0.014	6.17 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- CMC = Maximum concentration (1-hour average)
- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- $10. Fecal\ Coliform\ limit\ is\ a\ monthly\ geometric\ mean\ of < 200\ /\ 100\ mL,\ and\ no\ more\ than\ 10\%\ of\ the\ monthly\ observations\ above\ 400\ /100\ mL.$

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	May	Flag			es Criteria (USEPA) 1	Ami	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Jater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:35														
In situ Parameters															
Water Temperature (°C)	8.89														
Dissolved Oxygen (mg/L)	10.50												>7		
Specific Conductance (mmhos/cm)	54									900					
pH (Standard Units)	7.73							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.6									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	June	Flag			es Criteria (USEPA) 1 c Life Protection	Ami	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	11:38		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units)	11.00 9.65 60 7.84							6.5-9.0		900			>7 6.5-8.5		
PH (Standard Units) Turbidity (NTU)	1.8							6.5-9.0		5			6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	July	Flag			es Criteria (USEPA) 1 c Life Protection	Ami	bient Water	Recommended 2 Quality Criteria to Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health	
Time	11:32		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL	Objectives		(aquatic org. consump)
In situ Parameters Water Temperature (°C)	12.86														
Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units)	8.95 94 8.32							6,5-9,0		900			>7 6.5-8.5		
Turbidity (NTU)	1.3							>.0		5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC4 (Old Cow Creek below Kilrac Powerhouse)	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	8:58		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	11.48 9.69 96 8.16 0.0							6.5-9.0		900 5			>7 6.5-8.5		

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC4 (Old Cow Creek below Kilrac	October	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2	Cal Dept.		USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
Powerhouse)		rag		water Aquatio	Life Protection			Life Protection	Ticaliii (ater Standards		Objectives	Sources of Drinking water	Other waters
Time	13:20		CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters															
Water Temperature (°C)	9.88														
Dissolved Oxygen (mg/L)	9.88												>7		
Specific Conductance (mmhos/cm)	102									900					
pH (Standard Units)	8.24							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.2									5					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	< 0.10								50		10				
Barium (mg/L)	0.00280								1		2			1.0	
Cadmium (mg/L)	< 0.002		1.4286	2.0669		0.16193	1.05439		5		5				
Copper (mg/L)	< 0.003		5.1594	7.2857		5.1594	7.2857		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	0.01500		1.3165	33.7846		1.3165	33.7846		15		15				
Manganese (mg/L)	2.37000									50		50			
Silver (mg/L)	0.01200				1.2321			1.1488		100					
Zinc (mg/L)	< 0.02		66.5968	66.5968		66.5968	66.5968			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	< 0.10		150	340		150	340								
Cadmium (mg/L)	0.00300		1.3401	2.0111		0.15189	1.0259								
Copper (mg/L)	0.03700		4.9530	6.9942		4.9530	6.9942								
Lead (mg/L)	< 0.002		1.1744	30.1359		1.1744	30.1359								
Mercury (mg/L)	3.19E-04					0.77	1.40								
Silver (mg/L)	< 0.008				1.04724			0.97644							
Zinc (mg/L)	< 0.02		65.6645	65.1317		65.6645	65.1317								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰	13												200/400		
Ammonia - Total (mg/L) 5	< 0.05					1.68	3.54						200/400		
Total Hardness, as CaCO3 (mg/L)	50.0					1.50	5.54								
Chloride (mg/L) 9	0.3					230	860			250		250			
Fluoride (mg/L)	0.0	J				230	200		2	250	4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.1								10		10	_			
Alkalinity - Total (mg/L)	46.5					≥ 20									
Total Dissolved Solids (mg/L)	77.0					-				500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15		0.2			0.7	220
PCBs (mg/L)	0.0		0.014			0.014			0.5		0.5			0.00017	0.00017
, , ,															

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

	MC	1 (Mill Creek abo	ve diversion)			
				2003		
				2003		$\overline{\Box}$
	March	May	June	July	August	Oct
Time	9:15	9:05	8:42	9:03	17:08	10:
In situ Parameters						-
In sua Lutaneters						
Water Temperature (°C)	6.84	12.55	14.19	15.30	17.33	12.
Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm)	10.98	9.70	8.81	8.71	9.79	9.
pH Specific Conductance (μmhos/cm)	7.27	138 7.61	159 7.99	168 8.25	160 8.37	8.
Turbidity (NTU)	5.5	2.2	7.6	6.2	0.0	0.
Depth (M)	0.9	1.0	1.0	1.0	1.0	
Analytical Parameters						$\overline{\mathbf{H}}$
Total Coliform (MPN/100 mL)	>1,600	NS	NS	NS	NS	9
Fecal Coliform (MPN/100 mL)	900	NS	NS	NS	NS	
Total Metals:						
Arsenic (µg/L)	< 0.10	NS	NS	NS	NS	0.
Barium (mg/L)	0.0072	NS	NS	NS	NS	0.00
Cadmium (µg/L)	<0.002 0.706	NS NS	NS NS	NS NS	NS NS	<0.0
Copper (μg/L) Lead (μg/L)	0.706	NS NS	NS NS	NS NS	NS NS	0.0
Manganese (μg/L)	4.46	NS	NS	NS	NS	7.
Silver (μg/L)	< 0.008	NS	NS	NS	NS	<0.0
Zinc (µg/L)	0.46	NS	NS	NS	NS	<0.
Dissolved Metals:						+
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	0.
Barium (mg/L)	0.0066	NS	NS	NS	NS	0.00
Cadmium (µg/L)	< 0.002	NS	NS	NS	NS	< 0.0
Copper (µg/L)	0.451	NS	NS	NS	NS	0.0
Iron (mg/L) Lead (μg/L)	0.094 <0.002	NS NS	NS NS	NS NS	NS NS	0.01 <0.0
Manganese (μg/L)	1.96	NS	NS	NS	NS	1
Mercury (µg/L)	0.00174	NS	NS	NS	NS	0.0003
Silver (µg/L)	< 0.008	NS	NS	NS	NS	<0.0
Zinc (μg/L)	0.2	NS	NS	NS	NS	<0
Ammonia - Total (mg/L)	<0.05	NS	NS	NS	NS	<0
Total Hardness, as CaCO3 (mg/L)	53.9	NS	NS	NS	NS	8
Chloride (mg/L)	0.86	NS	NS	NS	NS	0.
Fluoride (mg/L)	0.03	NS	NS	NS	NS	0.0
Nitrate, as NO3 (mg/L) + Nitrite (mg/L) Alkalinity - Total (mg/L)	0.0734	NS NS	NS NS	NS NS	NS NS	0.11
Total Dissolved Solids (mg/L)	99	NS	NS	NS NS	NS	1
Total Suspended Solids (mg/L)	1.6	NS	NS	NS	NS	
Total Phosphorous (mg/L)	< 0.03	NS	NS	NS	NS	0.02
Orthophosphate (mg/L)	0.0263	NS	NS	NS	NS	0.05
Total Calcium (mg/L)	10.60	NS	NS	NS	NS	13.
Total Magnesium (mg/L) Total Sodium (mg/L)	7.58 3.01	NS NS	NS NS	NS NS	NS NS	10.
Dissolved Calcium (mg/L)	10.6	NS NS	NS NS	NS NS	NS NS	13
Dissolved Magnesium (mg/L)	7.56	NS	NS	NS	NS	10
Dissolved Sodium (mg/L)	3.02	NS	NS	NS	NS	4
Total Boron (mg/L)	<0.10	NS	NS	NS	NS	<
Cyanide (mg/L) Molybdenum (mg/L)	<0.0050 <0.0050	NS NS	NS NS	NS NS	NS NS	<0.00
	10.5050	110	115	1.0	110	10.00
PCBs	.1.0	NG	NG	NG	NG	
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	<
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	NS	NS	NS NS	NS	+ <
Aroclor 1242 (μg/L)	<1.0	NS	NS	NS	NS	-
Aroclor 1248 (µg/L)	<1.0	NS	NS	NS	NS	<
Aroclor 1254 (µg/L)	<1.0	NS	NS	NS	NS	<
Arcelor 1269 (µg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	<
Aroclor 1268 (μg/L)	<1.0	NS	NS	NS	NS	++
J = Estimated concentration below the report calculation, the RL is normally set to 5 to 1				he MDL is based on a	statistical	

	Ctatiatiaa	
	Statistics	
MAX	MIN	AVG
15.30 10.98	6.84 8.71	11.82 9.75
168.00	120.00	148.00
8.25 6.20	7.27 2.20	7.81
1.00	0.90	4.60 0.98
0.13	0.13	0.13
0.0072	0.0033	0.00525
0	0	#DIV/0!
0.706 0.039	0.13 0.021	0.418
7.21	4.46	5.835
0	0	#DIV/0!
0.46	0.46	0.46
0.15	0.15	0.15
0	0	#DIV/0!
0.451	0.095	0.273
0.094	0.0154	0.0547
0	0	#DIV/0!
0.00174	0.000309	0.001025
0	0.2	#DIV/0!
0.2	0.2	0.2
0	0	#DIV/0!
0.86	53.9 0.81	70.45 0.835
0.119	0.0734	0.0962
80.5 136	61 99	70.75 117.5
5.2	1.6	3.4
0.0299	0.0299 0.0263	0.0299
13.8	10.6	12.2
10.5	7.58	9.04
4.55	3.01	3.78 12.15
13.7 10.7	10.6 7.56	9.13
4.67	3.02	3.845

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	March	Flag	California	Toxics Rule	s Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept. Health (USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	nwater Aquatio	Life Protection	Fresh	water Aquatio	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (μmhos/cm) pH (Standard Units) Turbidity (NTU)	9:15 6.84 10.98 120 7.27 5.5		ссс	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.10 0.00720 <0.002 0.70660 0.03900 4.46000 <0.008 0.46000 <0.10 <0.002 0.45100 <0.002 1.74E-03 <0.008 0.20000		1.5154 5.5014 1.4486 70.9727 150 1.4167 5.2813 1.2763	2.2497 7.8199 37.1743 70.9727 340 2.1819 7.5071 32.7527	1.4020 1.19166	0.17120 5.5014 1.4486 70.9727 150 0.16005 5.2813 1.2763 0.77 69.9791	1.13805 7.8199 37.1743 70.9727 340 1.1037 7.5071 32.7527 1.40 69.4113	1.3072 1.11109	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	900 <0.05 53.9 0.9 0.0 0.1 61.0 99.0					5.17 230 ≥ 20	18.17 860		2 10	250 500	4 10	250 2 500	200/400		
Cyanide (mg/L) PCBs (µg/L)	<0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5		0.2 0.5			0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	May	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria ic Life Protection	Cal Dept. Health (USE Jater Standards	IPA .	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,
Time	9:05		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	12.55 9.70												>7		
Dissolved Oxygen (hg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	138 7.61 2.2							6.5-9.0		900 5			6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- . USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	June	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	, ,
			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	/ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:42														
In situ Parameters															
Water Temperature (°C)	14.19														
Dissolved Oxygen (mg/L)	8.81												>7		
Specific Conductance (mmhos/cm)	159									900					
pH (Standard Units)	7.99							6.5-9.0					6.5-8.5		
Turbidity (NTU)	7.6									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	July	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) ³	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	hwater Aquati	ic Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:03														
In situ Parameters															
Water Temperature (°C)	15.30														
Dissolved Oxygen (mg/L)	8.71												>7		
Specific Conductance (mmhos/cm)	168									900					
pH (Standard Units)	8.25							6.5-9.0					6.5-8.5		
Turbidity (NTU)	6.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

MC1 (Mill Creek above diversion)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
	17.00		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	17:08														
In situ Parameters															
Water Temperature (°C)	17.33														
Dissolved Oxygen (mg/L)	9.79												>7		
Specific Conductance (mmhos/cm)	160									900					
pH (Standard Units)	8.37							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

MC1 (Mill Creek above diversion)	October	Flag			Criteria (USEPA) 1	Ar	PA National Re	ality Criteria	Cal Dept. Health (US	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	nwater Aquatic	Life Protection	Fresh	hwater Aquatic I	Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:23														
In situ Parameters															
Water Temperature (°C)	12.57														
Dissolved Oxygen (mg/L)	9.59												>7		
Specific Conductance (mmhos/cm)	166									900					
pH (Standard Units)	8.10							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.5									5					
·															
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	0.13000								50		10				
Barium (mg/L)	0.00330								1		2			1.0	
Cadmium (mg/L)	< 0.002		2.2070	3.8607		0.24409	1.85159		5		5				
Copper (mg/L)	0.13000		8.2823	12.2776		8.2823	12.2776		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	0.02100		2.6647	68.3814		2.6647	68.3814		15		15				
Manganese (mg/L)	7.21000									50		50			
Silver (mg/L)	< 0.008				3.1943			2.9783		100					
Zinc (mg/L)	< 0.02		106.4807	106.4807		106.4807	106.4807			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	0.15000		150	340		150	340								
Cadmium (mg/L)	< 0.002		2.0190	3.6670		0.22330	1.7587								
Copper (mg/L)	0.09500		7.9510	11.7865		7.9510	11.7865								
Lead (mg/L)	< 0.002		2.1619	55.4774		2.1619	55.4774								
Mercury (mg/L)	3.09E-04					0.77	1.40								
Silver (mg/L)	< 0.008				2.71514			2.53158							
Zinc (mg/L)	< 0.02		104.9900	104.1381		104.9900	104.1381								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰	30												200/400		
Ammonia - Total (mg/L) 5	< 0.05					2.10	4.64						200/400		
Total Hardness, as CaCO3 (mg/L)	<0.05 87.0					2.10	4.04								
Chloride (mg/L) 9	0.8					230	860			250		250			
Fluoride (mg/L)	0.8					230	000		2	230	4	230			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.0								10		10	4			
Alkalinity - Total (mg/L)	80.5					≥ 20			10		10				
Total Dissolved Solids (mg/L)	136.0					- 20				500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15	500	0.2	500		0.7	220
PCBs (mg/L)	0.0030		0.0032	0.022		0.0032	0.022		0.15		0.2			0.00017	0.00017
1 CD3 (ing/L)	5.0		0.014			0.014			0.5		0.5			5.55017	0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

MC2 Water Quality						
		MC2 (Mill C	reek)			
			2	003		
	March	May	June	July	August	Octobe
Time	NS	9:12	8:35	8:55	16:59	10:43
In situ Parameters						
Water Temperature (°C)	NS	12.69	14.36	15.47	17.36	12.64
Dissolved Oxygen (mg/L)	NS	9.80	9.01	8.82	9.83	8.47
Specific Conductance (µmhos/cm)	NS	138	159	168	161	167
рН	NS	7.81	7.98	8.27	8.42	7.94
Turbidity (NTU)	NS	4.4	0.9	0.5	0.0	4.2
Depth (M)	NS	1.0	1.0	1.0	1.0	0.1
NS = Constituent not sampled for during r	nonitoring program					

	Statistics		
MAX	MIN	AVG	
15.47	12.64	13.60	
9.80	8.47	9.03	
168.00	138.00	157.67	
8.27	7.81	8.01	
4.40	0.50	3.03	
1.00	0.10	0.70	
+			
-			
1			

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	March	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended ² Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquation	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			ccc	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:12														
In situ Parameters															
Water Temperature (°C)	12.69														
Dissolved Oxygen (mg/L)	9.80												>7		
Specific Conductance (mmhos/cm)	138									900					
pH (Standard Units)	7.81							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.4									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Unifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	June	Flag			s Criteria (USEPA) 1 c Life Protection	Aml	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (C		USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,,
Time	8:35		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	14.36 9.01												>7		
Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	7.98 0.9							6.5-9.0		900 5			6.5-8.5		

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California *Water Quality Granted Toxics Rule*]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	July	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Fresh	water Aquat	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:55														
In situ Parameters															
Water Temperature (°C)	15.47														
Dissolved Oxygen (mg/L)	8.82												>7		
Specific Conductance (mmhos/cm)	168									900					
pH (Standard Units)	8.27							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.5									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

MC2 (Mill Creek)	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria ic Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	16:59														
In situ Parameters															
Water Temperature (°C)	17.36														
Dissolved Oxygen (mg/L)	9.83												>7		
Specific Conductance (mmhos/cm)	161									900					
pH (Standard Units)	8.42							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria Shaded cells represent exceedances of the criteria CCC = Continuous concentration (4-day average)

- CCC = Continuous concentration (1-day average)

 CMC = Maximum concentration (1-hour average)

 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.

 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

 NS = Constituent not sampled for during monitoring program

October	Flag	Freshwater Aquatic
10:43		CCC CMC
12.64 8.47 167 7.94 4.2		
	12.64 8.47 167 7.94	10:43 12.64 8.47 167 7.94

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health by Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutar
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (US
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and Sar NS = Constituent not sampled for during monitoring program

Criteria (USEPA) 1 Life Protection	Aml	bient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (of Public CDPH) ³ Drinking W
Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL
			6.5-9.0		900 5

ased criteria and secondary MCLs are human welfare based criteria

nts for the State of California [*California Toxics Rule*]. (USEPA, 2000; 40 CFR Part 131) SEPA, 2006; EPA 822-H-04-001)

1 Joaquin River Basins.

USEPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
Vater Standards	Objectives	Sources of Drinking water	Other waters
1° MCL 2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)

	200		1	1		=
		_	20)))3 		
	March	May	June	July	August	October
Time	9:45	8:50	8:20	8:42	16:49	10:00
In situ Parameters						
Water Temperature (°C')	5 74	9 19	13.68	16 99	20.46	-
Dissolved Oxygen (mg/L)	10.37		8.99	8.59	7.73	~ .
Specific Conductance (µmhos/cm)	69 7 55	59 7 52	74	104	104 8 17	110 7 88
Turbidity (NTU)	3.2	0.1	1.1	1.8	0.2	
Depth (M)	1.5	1.0	1.0	1.0	1.0	
Analyacat Farameters						
Total Coliform (MPN/100 mL) Fecal Coliform (MPN/100 mL)	1,600	Z Z	NS S	Z Z	Z Z	500
Total Metals:						
Arsenic (μg/L)	<0.30 DNQ	NS	NS	NS	NS	_
Barium (mg/L) Cadmium (μg/L)	< 0.0055	Z Z	Z Z	Z Z	Z Z	<0.0
Copper (µg/L)	0.309	NS	NS	NS	NS	0.
Lead (μg/L) Manganese (μg/L)	0.026	NS	NS	NS	NS	<0.002
Zinc (µg/L)	<0.008	Z Z	Z Z	Z Z	Z Z	<0.008
Discolved Metals:						
Arsenic (µg/L)	<0.30 DNQ	NS	SN	NS	SN	
Barium (mg/L)	0.0063	NS NS	NS	NS	NS NS	0.0
Copper (µg/L)	0.187	NS	NS	NS	NS 33	0.18
Iron (mg/L)	0.0133	NS	NS	NS	NS	0.0
Manganese (μg/L)	1.6	NS	NS	NS	NS 23	3.07
Mercury (µg/L)	0.00203	NS	NS	NS	NS	0.0
Zinc (μg/L)	0.21	NS	NS	NS N	NS S	<0.08
Ammonia - Total (mg/L)	<0.05	NS	NS	NS	SN	<u>^</u>
Total Hardness, as CaCO3 (mg/L)	27.4	Z Z	NS S	NS S	Z Z	2 / 2
Fluoride (mg/L)		NS	NS	NS	NS NS	0.03 J
Alkalinity - Total (mg/L)	0.04	NS NS	NS 3	NS NS	NS 23	0.0
Total Dissolved Solids (mg/L)	67	NS NS	NS	NS	N N	
Total Phosphorous (mg/L)	<0.03	NS	SN	NS	SN	6 0.
Orthophosphate (mg/L) Total Calcium (mg/L)	6 98	Z Z	Z Z	Z Z	Z Z	0.0
Total Magnesium (mg/L)	2.81	NS	NS	NS	SN	
Dissolved Calcium (mg/L)	6.55	NS N	NS 23	NS NS	NS S	= .
Dissolved Magnesium (mg/L)	2.81	NS	NS	NS	NS	
Total Boron (mg/L)	<0.10	NS	NS 3	NS 3	NS 2	Δ.
Cyanide (mg/L)	<0.0050	NS	NS	NS	SN	<0.0
Molybdenum (mg/L)	<0.0050	Z	Z	Z	Z	<0.0
PCBs	10	Ng	NS	N	Z	
Aroclor 1221 (μg/L)	<1.0	NS S	NS S	NS S	NS	^ /
Aroclor 1232 (µg/L)	<1.0	NS	NS	NS	SN	<0.2
A 1242 (11 × II	<1.0	NS S	NS 23	NS 23	NS S	
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0	NS	NS	NS	SN	
Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L)	<1.0	N N	NS NS	N N	N N	
Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1260 (µg/L) Aroclor 1268 (µg/L)						
Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1260 (µg/L) Aroclor 1268 (µg/L)					2 2 2 3	
Aroclor 1242 (µg/L) <1.0	porting limit (RL) and ab	ove the method detec	ction limit (MDL), the	limit (MDL), the MDL is based on a statistical	statistical	

		10.4 5.11 4.43	0.0283 10.3 5.02	0.0532 48.1 92 2.2	51 0.44	0.00203 0 0.21	0.54 0 0.187 0.0474 0		0.56 0.0076	MAX 16.99 10.93 110.00 8.01 5.70 1.50	
		6.55 2.81 2.49	0.0176 6.98 2.81	0.0481 32.4 67 2.2	27.4 0.43	0.0003 0 0.21	0.54 0 0.18 0.0133 0		0.56 0.0055	5.74 8.59 59.00 7.52 0.10	Statistics
			#UIV/0! 0.02295 8.64 3.915	0	#		0.54 #DIV/0! 0.1835 0.03035 #DIV/0!	0.7 0 4 #DIV	+	AVG 11.13 9.67 85.50 7.74 2.70	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	March	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended ² Quality Criteria	Cal Dept. Health (US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	nwater Aquati	c Life Protection	Fresh	water Aquatio	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	9:45 5.74 10.37 69 7.55 3.2		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Copper (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L)	<0.30 0.00550 <0.002 0.30900 0.02600 4.40000 <0.008 0.40000 <0.002 0.18700 <0.002 2.03E-03 <0.008 0.21000	DNQ	0.8909 3.0859 0.6122 40.0057 150 0.8581 2.9625 0.5997	1.0487 4.1338 15.7104 40.0057 340 1.0468 3.9684 15.3906 39.1256	0.4379 0.37218	0.10370 3.0859 0.6122 40.0057 150 0.09988 2.9625 0.5997 0.77 39.4457	0.57207 4.1338 15.7104 40.0057 340 0.5710 3.9684 15.3906 1.40 39.1256	0.4083 0.34702	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	50 <0.05 27.4 0.4 0.0 0.0 32.4 67.0 <0.0050 0.0		0.0052 0.014	0.022		4.17 230 ≥ 20 0.0052 0.014	12.31 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	May	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Jater Standards	PA .	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:50														
In situ Parameters															
Water Temperature (°C)	9.19														
Dissolved Oxygen (mg/L)	10.93												>7		
Specific Conductance (mmhos/cm)	59									900					
pH (Standard Units)	7.52							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- . USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	June	Flag			es Criteria (USEPA) 1 c Life Protection	Am	bient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE /ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	8:20		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C)	13.68														
Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units)	8.99 74 7.69							6.5-9.0		900			>7 6.5-8.5		
Turbidity (NTU)	1.1							0.3-9.0		5			0.5-6.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Valifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	July	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:42														
In situ Parameters															
Water Temperature (°C)	16.99														
Dissolved Oxygen (mg/L)	8.59												>7		
Specific Conductance (mmhos/cm)	104									900					
pH (Standard Units)	8.01							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.8									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC1 (South Cow Creek above diversion)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquation	c Life Protection	Freshy	water Aquati	c Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	ccc	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	16:49														
In situ Parameters															
Water Temperature (°C)	20.46														
Dissolved Oxygen (mg/L)	7.73												>7		
Specific Conductance (mmhos/cm)	104									900					
pH (Standard Units)	8.17							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.2									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC1 (South Cow Creek above diversion)	October	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
ui (0151611)			Fres	hwater Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump
Time	10:00														
In situ Parameters															
Water Temperature (°C)	12.58														
Dissolved Oxygen (mg/L)	8.77												>7		
Specific Conductance (mmhos/cm)	110									900					
pH (Standard Units)	7.88							6.5-9.0					6.5-8.5		
Turbidity (NTU)	5.7									5					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	0.56000	DNQ							50		10				
Barium (mg/L)	0.00760								1		2			1.0	
Cadmium (mg/L)	< 0.002		1.4510	2.1136		0.16432	1.07583		5		5				
Copper (mg/L)	0.06800		5.2475	7.4229		5.2475	7.4229		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	< 0.002		1.3501	34.6471		1.3501	34.6471		15		15				
Manganese (mg/L)	4.91000									50		50			
Silver (mg/L)	< 0.008				1.2747			1.1886		100					
Zinc (mg/L)	< 0.02		67.7237	67.7237		67.7237	67.7237			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	0.54000	DNQ	150	340		150	340								
Cadmium (mg/L)	< 0.002		1.3599	2.0548		0.15400	1.0459								
Copper (mg/L)	0.18000		5.0376	7.1260		5.0376	7.1260								
Lead (mg/L)	< 0.002		1.2004	30.8053		1.2004	30.8053								
Mercury (mg/L)	3.00E-04					0.77	1.40								
Silver (mg/L)	< 0.008				1.08353			1.01027							
Zinc (mg/L)	< 0.02		66.7755	66.2338		66.7755	66.2338								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) 10	500												200/400		
Ammonia - Total (mg/L) 5	< 0.05					2.87	7.02								
Total Hardness, as CaCO3 (mg/L)	51.0														
Chloride (mg/L) 9	0.4					230	860			250		250			
Fluoride (mg/L)	0.0								2		4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.1								10		10				
Alkalinity - Total (mg/L)	48.1					≥ 20									
Total Dissolved Solids (mg/L)	92.0									500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15		0.2			0.7	220
PCBs (mg/L)	0.0		0.014			0.014			0.5		0.5			0.00017	0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

Time March May June July August In siu Parameters NS 9:30 8:07 9:12 17:17 Water Temperature (°C) NS 9.44 13.76 16.57 19.36 Dissolved Oxygen (mg/L) NS 10.92 928 7.80 879 Specific Conductance (µmhos/cm) NS 7.70 7.67 8.04 8.31 Turbidity (NTU) NS 0.4 1.7 1.7 0.0 Depth (M) NS 1.0 1.0 1.0 1.0				2)	2003		
March May June July NS 9:30 8:07 9:12 NS 9:44 13.76 16.57 NS 10.92 9:28 7:80 NS 10.92 9:28 7:80 NS 62 80 121 NS 7:70 7:67 8:04 NS 1:0 1:0 1:0 NS 1:0 1:0 1:0							
NS 9:30 8:07 9:12 NS 9:30 8:07 9:12 NS 9:44 13.76 16:57 NS 10.92 9:28 7.80 NS 62 80 121 NS 7.70 7.67 8.04 NS 0.44 1.7 1.7 NS 1.0 1.0 1.0 1.0		March	May	June	July	August	October
NS 9.44 13.76 16.57 NS 10.92 928 7.80 NS 62 80 121 NS 7.70 7.67 8.04 NS 7.70 7.67 8.04 NS 1.0 1.0 1.0 1.0	Time	NS	9:30	8:07	9:12	17:17	9:48
NS 9,44 13.76 16.57 NS 10.92 9.28 7.80 NS 62 80 121 NS 7.70 7.67 8.04 NS 0.4 1.7 1.7 1.7 NS 1.0 1.0 1.0 1.0	In situ Parameters						
NS 9.44 13.76 16.57 NS 10.92 9.28 7.80 NS 62 80 121 NS 7.70 7.67 8.04 NS 0.4 1.7 1.7 NS 1.0 1.0 1.0							
NS 10.92 9.28 7.80 NS 62 80 121 NS 7.70 7.67 8.04 8 NS 0.4 1.7 1.7 1.7 NS 1.0 1.0 1.0 1.0	Water Temperature (°C)	NS	9.44	13.76	16.57	19.36	12.50
NS 62 80 121 NS 7.70 7.67 8.04 8 NS 0.4 1.7 1.7 1.7 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Dissolved Oxygen (mg/L)	NS	10.92	9.28	7.80	8.79	9
NS 7.70 7.67 8.04 8 NS 0.4 1.7 1.7 1.7 NS 1.0 1.0 1.0	Specific Conductance (µmhos/cm)	NS	62	80	121	121	
NS 0.4 1.7 1.7 1.7 NS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	рН	NS	7.70	7.67	8.04	8.31	7.95
NS 1.0 1.0 1.0	Turbidity (NTU)	NS	0.4	1.7	1.7	0.0	8.5
		SN	1.0	1.0	1.0	1.0	
	Depth (M)						

1.00	8.50	8.04	127.00	10.92	16.57	MAX						
	0.40					MIN		Statistics				
1.00	3.53	7.90	103.33	9.39	12.84	AVG						

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	March	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended ² Quality Criteria	Cal Dept. Health (CDPH) 3	USE	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquatio	Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	May	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria ic Life Protection	Cal Dept. Health (USE /ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL	Objectives		
Time	9:30		CCC	CMC	Insianianeous Max	ccc	CMC	Instantaneous Max	1 MCL	2 MCL	1 MCL	2 MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters															
Water Temperature (°C)	9.44														
Dissolved Oxygen (mg/L)	10.92												>7		
Specific Conductance (mmhos/cm)	62									900					
pH (Standard Units)	7.70							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.4									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Lulifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	June	Flag			s Criteria (USEPA) 1	Aml	oient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE /ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	8:07 13.76 9.28 80 7.67 1.7		CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California *Water Quality Granted Toxics Rule*]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	July	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, , , , , , , , , , , , , , , , , , ,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			ССС	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:12														
In situ Parameters															
Water Temperature (°C)	16.57														
Dissolved Oxygen (mg/L)	7.80												>7		
Specific Conductance (mmhos/cm)	121									900					
pH (Standard Units)	8.04							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.7									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

SC3 (South Cow Creek below diversion)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE Vater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	$2^{\circ}MCL$	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	17:17														
In situ Parameters															
Water Temperature (°C)	19.36														
Dissolved Oxygen (mg/L)	8.79												>7		
Specific Conductance (mmhos/cm)	121									900					
pH (Standard Units)	8.31							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria Shaded cells represent exceedances of the criteria CCC = Continuous concentration (4-day average)

- CCC = Continuous concentration (1-day average)

 CMC = Maximum concentration (1-hour average)

 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.

 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

 NS = Constituent not sampled for during monitoring program

SC3 (South Cow Creek below diversion)	October	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept Health (of Public CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, , ,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	ic Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump
Time	9:48														
In situ Parameters															
Water Temperature (°C)	12.50														
Dissolved Oxygen (mg/L)	9.44												>7		
Specific Conductance (mmhos/cm)	127									900					
pH (Standard Units)	7.95							6.5-9.0					6.5-8.5		
Turbidity (NTU)	8.5									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- L. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131) 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
 Constituent not sampled for during monitoring program

June July August		2003			5		
March May June July August							
11.05 10.36 9.23 7.23 18.25		March	May	June	July	August	October
1.0.59	Time	11:05	10:36	9:23	7:23	18:25	H
11.03							
10.00 10.0	Water Temperature (°C)	6 70	11 00	15.25	10.28	10 03	
10	Dissolved Oxygen (mg/L)	11.23	10.66	9.23	8.44	8.89	
8.11 8.11 8.12 8.13 8.13 8.13 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.10	Specific Conductance (µmhos/cm)	84	73	90	133	134	
900 NS	Turbidity (NTU)	8.1	0.9	3.2	0.4	0.8	0.1
900 NS NS NS NS NS NS NS	Depth (M)	0.5	1.0	1.0	1.0	1.0	
900 NS	Analytical Parameters						
A-0.30 DNQ	Total Coliform (MPN/100 mL)	900	NS	NS	NS	N N	
Col. 2017 NIS NIS NIS NIS	Total Metals:	72	2	70	20	5	
0.0071	Arsenic (µg/L)		SS	NS	NS	SN	
0.0003	Barium (mg/L)		SN	NS	NS	SN	0.0072
1,963 N/S N/	Copper (µg/L)	0.457	Z Z	NS S	NS 3	NS 23	
4.96 NS	Lead (μg/L)	0.063	SN	NS	NS	SN	<u>^</u>
A-0.30 DNQ	Manganese (μg/L) Silver (μg/L)	<0.008	N S	NS NS	NS S	N N	<u> </u>
A-0.30 DNQ	Zinc (µg/L)	0.63	SN	NS	NS	SN	< 0.02
0.0030 NNS N	Dissolved Metals:						
A0002 NS NS NS NS NS	Arsenic (µg/L)		Z Z	Z Z	Z Z	Z Z	
0.0239	Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<u>^</u>
COLORS C	Copper (µg/L)	0.238	NS	NS	NS	NS	2 0
1.11	Lead (µg/L)		NS 2	NS	NS	NS 2	<u>^</u> .
COODS COOD	Manganese (µg/L)		N NS	NS	NS	N N	0 00
0.18	Silver (µg/L)	<0.008	Z Z	NS	NS	NS 2	<u></u>
Co.005 NS NS NS NS	Zinc (µg/L)	0.18	SN	NS	SN	SN	
1.55	Ammonia - Total (mg/L)	<0.05	No.	NS	NS	SN N	_
(mg/L) 0.0466 NS	Chloride (mg/L)	0.55	NS 3	NS N	NS 23	NS 3	
Major Majo	Fluoride (mg/L)		NS	NS	NS	NS S	0.03
170	Alkalinity - Total (mg/L)		Z Z	NS NS	NS S	N S	
Co.013	Total Dissolved Solids (mg/L)	70	SN	NS	NS	SN	
0.0189	Total Phosphorous (mg/L)	<0.03	Z Z	NS S	NS S	N N	<u> </u>
MS	Orthophosphate (mg/L)	0.0189	SN	NS	NS	NS	0.
NS	Total Calcium (mg/L)	8.02	SN	NS	NS	SNS	
tig(L) 8.16 NS <	Total Magnesium (mg/L) Total Sodium (mg/L)	2.86	Z Z	Z Z	Z Z	Z Z	
(mg/L) 3.50	Dissolved Calcium (mg/L)	8.16	SN	NS	NS	SN	
Color NS	Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	3.50	Z Z	N N	N N	N N	7.69 4.88
	Total Boron (mg/L)	<0.10	NS S	NS	NS	NS	^
Column C	Cyanide (mg/L)	<0.0050	SN	NS	NS	SN	<0.
	Molybdenum (mg/L)	<0.0050	S	ZS	Z	Z	<u> </u>
	PCBs						
Cl.0	Aroclor 1016 (μg/L)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N N	No.	No.	N.S.	
Call	Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	N N	NS S	N N	NS S	<0.2
C1.0 NS NS NS NS NS NS NS N		<1.0	SN	NS	NS	NS	
NS N	Aroclor 1242 (µg/L)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z Z	Z Z	Z Z	Z Z	
NS NS NS In the	Aroclor 1242 (μg/L) Aroclor 1248 (μg/L) Aroclor 1254 (μσ/L)	<1.0	NS	NS	NS	NS	
ion	Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1254 (µg/L)	<1.0	SN	NS	NS	SN	
ion	Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1250 (µg/L) Aroclor 1260 (µg/L)						
	Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1260 (µg/L) Aroclor 1268 (µg/L)			the CICIN timit AMDID	e MDL is based on a	statistical	

						7.69 4.88	12.2	4 81	12.2	0.0354	5.9	113	0.0787	67.6	0	0.18	0.002	0	0.029	0.238	9.1	0.43	0.63	0	0.063	0.457	0.0072	0.42		1.00	8.10	137.00	11.23	19.28	MAX				
										0			0.0466	34.3 0.55	0	0.18	0.000482			0.163		0.43		0)								≤	Statistics			
					0.000		10.18			0.0	#		0.06265 50.55	50.95 0.575	#DIV/0!		0.001241 #DIV/0!			#DIV/0! 0.2005		0.43		#DIV/0!		0.2565)								AVG				

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse diversion)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria		of Public	US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	1 30-day average)
communice with powermouse diversion,			Fresh	water Aquatio	c Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	11:05 6.79 11.23 84 7.77 8.1		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) ⁷ Arsenic (ug/L)	<0.30	DNQ							50		10				
Cadmium (mg/L) Cadmium (μg/L) Copper (μg/L) Lead (μg/L) Manganese (μg/L) Silver (μg/L) Zinc (μg/L)	0.00710 0.00500 0.45700 0.06300 4.96000 <0.008 0.63000	BNQ	1.0627 3.7389 0.8148 48.3917	1.3511 5.1080 20.9103 48.3917	0.6443	0.12248 3.7389 0.8148 48.3917	0.71880 5.1080 20.9103 48.3917	0.6008	1 5 1,300 15	1,000 50 100 5,000	2 5 1,300 15	1,000 50		1.0	
Dissolved Metals (units of milligrams per liter) ⁶ Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Zinc (µg/L)	<0.30 <0.002 0.23800 <0.01 2.00E-03 <0.008 0.18000	DNQ	150 1.0136 3.5893 0.7716	340 1.3360 4.9037 19.8003	0.54768	150 0.11682 3.5893 0.7716 0.77 47.7142	340 0.7107 4.9037 19.8003 1.40 47.3271	0.51065							
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (μg/L)	22 <0.05 34.3 0.6 0.0 0.0 37.9 70.0 <0.0050 0.0		0.0052 0.014	0.022		3.30 230 ≥ 20 0.0052 0.014	8.55 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- CMC = Maximum concentration (1-hour average)
- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse	May	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE /ater Standards	EPA .	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	$2^{\circ}MCL$	1° MCL	$2^{\circ}MCL$		(water + organism consump)	(aquatic org. consump)
Time	10:36														
In situ Parameters															
Water Temperature (°C)	11.00														
Dissolved Oxygen (mg/L)	10.66												>7		
Specific Conductance (mmhos/cm)	73									900					
pH (Standard Units)	7.74							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.9									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- . USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse	June	Flag			es Criteria (USEPA) 1	Am	bient Water (Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Vater Standards	EPA .	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
direction) Time	9:23		ссс	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C)	15.45												_		
Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units)	9.23 90 7.91							6.5-9.0		900			>7 6.5-8.5		
Turbidity (NTU)	3.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse	July	Flag	California	Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept.	of Public CDPH) ³	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
disconsion)			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:23														
In situ Parameters															
Water Temperature (°C)	19.28														
Dissolved Oxygen (mg/L)	8.44												>7		
Specific Conductance (mmhos/cm)	133									900					
pH (Standard Units)	8.04							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.4									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California (hifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC4 (South Cow Creek above confluence with powerhouse	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) 3	USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Гіте	18:25														
In situ Parameters															
Water Temperature (°C)	19.93														
Dissolved Oxygen (mg/L)	8.89												>7		
Specific Conductance (mmhos/cm)	134									900					
oH (Standard Units)	8.57							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC4 (South Cow Creek above confluence with powerhouse	October	Flag		Toxics Rule	s Criteria (USEPA) 1		PA National R	ecommended 2	Cal Dept. Health (USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
to intuence with powerhouse				nwater Aquation	Life Protection			Life Protection	Treumin (Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters	7:57		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	14.19 9.77 137 7.89 0.1							6.5-9.0		900 5			>7 6.5-8.5		
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Lead (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Zinc (mg/L) Jinc (mg/L) Jinc (mg/L)	0.42000 0.00720 <0.002 0.05600 <0.002 3.04000 <0.002 0.43000 <0.002 0.16300 <0.002 4.82E-04 <0.008 <0.02	DNQ DNQ DNQ	1.8104 6.6761 1.9327 85.9865 150 1.6753 6.4090 1.6390	2.9045 9.6800 49.5966 85.9865 340 2.7894 9.2928 42.0608	2.0697 1.75925	0.20248 6.6761 1.9327 85.9865 150 0.18737 6.4090 1.6390 0.77 84.7827	1.43269 9.6800 49.5966 85.9865 340 1.3759 9.2928 42.0608 1.40	1.9298 1.64031	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	80 <0.05 67.6 0.6 0.0 0.1 63.2 113.0 <0.0050 0.0		0.0052 0.014	0.022		2.84 230 ≥ 20 0.0052 0.014	6.89 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

			20		_	
	March	May	June	July	August	October
Time	11:35	7:26	9:35	7:03	18:35	
In situ Parameters						
Water Temperature (°C)	7.22	11.04	16.04	19.52	23.40	
Dissolved Oxygen (mg/L)	10.58	10.67	9.19	8.36	7.76	
pH	7.65	7.61	7.82	8.06	8.05	7.85
Depth (M)	0.6	1.0	1.0	1.0	1.0	
Analytical Parameters						
Total Coliform (MPN/100 mL)	900	NS	NS	NS	SS	
Fecal Coliform (MPN/100 mL)	23	NS	Z	Z	Z	
Arsenic (µg/L)	<0.30 DNQ	NS	NS	NS	SN	
Barium (mg/L) Cadmium (ug/L)		NS	NS NS	N SN	Z Z	<u> </u>
Copper (µg/L)	0.478	NS	NS	NS	SN	0
Lead (μg/L) Manganese (μg/L)	6.66	NS	NS S	N N	NS	4.41
Zinc (µg/L)	0.99	NS	NS	NS	NS 23	<0.02
Dissolved Metals:						
Arsenic (µg/L) Barium (mg/L)	0.0059 DNQ	NS S	Z Z	Z Z	Z Z	0.0
Cadmium (µg/L)	<0.002	NS	NS	NS	SS	0.006
Iron (mg/L)	0.248	NS S	Z Z	N N	N N	0.0
Lead (µg/L)	<0.002	NS	NS	NS	SN	<0
Mercury (μg/L)	0.00201	NS	NS	NS	NS S	0.000
Silver (µg/L)	<0.008	NS SN	N N N	N S	N N	<u> </u>
Ammonia - Total (mg/L)	<0.05	NS	NS S	NS S	NS S	^ 8
Total Hardness, as CaCO3 (mg/L)	35.3	NS	SN	NS	SN	67.6
Chloride (mg/L) Fluoride (mg/L)	0.027	NS	NS S	N N	NS S	6
Nitrate, as NO3 (mg/L) + Nitrite (mg/L) Alkalinity - Total (mg/L)	0.0549	NS	NS N	N N	Z Z	0.0
Total Dissolved Solids (mg/L) Total Suspended Solids (mg/L)	69	SN	NS NS	NS NS	N N	109
Total Phosphorous (mg/L)	<0.03	NS	NS	NS	SS	0.1
Orthophosphate (mg/L) Total Calcium (mg/L)	8.17	NS S	Z Z	N N	N N	
Total Magnesium (mg/L)	3.57	NS	NS NS	N NS	N N	7.44
Dissolved Calcium (mg/L)	7.95	NS	SN	NS	NS S	
Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	3.43 2.86	NS NS	Z Z	Z Z	Z Z	
Total Boron (mg/L)	<0.10	NS	NS	NS	SN	
Cyanide (mg/L) Molybdenum (mg/L)	<0.0050	NS NS	Z Z	Z Z	Z Z	<u>.</u>
DCD.						
r Cbs	<1.0	NS	NS	NS	SN	
Aroclor 1016 (μg/L)	<1.0	NS SN	N N	N SN	N N	<0.2
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	NS	NS	NS	SN	
Aroclor 1016 (µg/L) Aroclor 1221 (µg/L) Aroclor 1232 (µg/L) Aroclor 1242 (µg/L)	<1.0	NS	X X	X X	Z Z	
Aroclor 1016 (µg/L) Aroclor 1221 (µg/L) Aroclor 1232 (µg/L) Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L)	<1.0	NS	NS	NS	NS NS	
Aroclor 1016 (µg/L) Aroclor 1221 (µg/L) Aroclor 1232 (µg/L) Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1260 (µg/L) Aroclor 1260 (µg/L)	\1:0	143	I.	100	170	
Aroclor 1016 (µg/L) Aroclor 1221 (µg/L) Aroclor 1232 (µg/L) Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1264 (µg/L) Aroclor 1268 (µg/L)				limit (ADI) the ADI is bood on a statistical	statistical	
Aroclor 1016 (µg/L) Aroclor 1221 (µg/L) Aroclor 1232 (µg/L) Aroclor 1242 (µg/L) Aroclor 1242 (µg/L) Aroclor 1248 (µg/L) Aroclor 1248 (µg/L) Aroclor 1254 (µg/L) Aroclor 1268 (µg/L)	norting limit (RI) and ab	ove the method deter	tion limit (MDI) the	a Magan on a		_

		7.48 4.71	0.0157 0.0358 12.5 7.44 4.79	0.0829 65 109	0 67.6 0.6	0.00201 0.02 0.15	0.48 0.006 0.248 0.033	0.478 0.057 6.66 0 0.99	0.45 0.0093	MAX 19.52 10.67 138.00 8.06 5.80 1.00	
			0.0157 0.0193 0.0193 8.17 3.57 2.96		35.3 0.51	0.000399 0.02 0.15	0.48 0.006 0.191 0.0233 0	0.093 0.002 4.41 0 0.99		MIN 7.22 8.36 76.00 7.61 0.30 0.60	Statistics
			0.0157 0.02755 10.335 5.505 3.875		#	0.001205 0.02 0.15	0.48 0.006 0.2195 0.02815 #DIV/0!	0.2855 0.0295 5.535 #DIV/0! 0.99	**	AVG 13.01 9.79 108.50 7.79 2.18 0.90	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below confluence with powerhouse diversion)	March	Flag		Toxics Rules	Criteria (USEPA) ¹			Recommended ²		of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
confluence with powerhouse diversion)		Tiug		water Aquatic	Life Protection			Life Protection	ricaitii (Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	7.22 10.58 86 7.65 5.8		ссс	СМС	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L) Zinc (µg/L)	<0.30 0.00750 <0.002 0.47800 0.47800 0.05700 6.66000 <0.008 0.99000 <0.30 <0.002 0.24800 <0.002 2.01E-03 <0.008 0.15000	DNQ	1.0869 3.8318 0.8452 49.5845 150 1.0354 3.6785 0.7968	1.3956 5.2482 21.6894 49.5845 340 1.3783 5.0383 20.4472	0.6770 0.57543	0.12512 3.8318 0.8452 49.5845 150 0.11918 3.6785 0.7968 0.77 48.8903	0.74011 5.2482 21.6894 49.5845 340 0.7309 5.0383 20.4472 1.40 48.4936	0.6312 0.53653	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	23 <0.05 35.3 0.5 0.0 0.1 42.0 69.0 <0.0050 0.0		0.0052 0.014	0.022		3.78 230 ≥ 20 0.0052 0.014	10.49 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- CMC = Maximum concentration (1-hour average)
- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below confluence with powerhouse	May	Flag			es Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE Jater Standards	PA .	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	
			ссс	СМС	Instantaneous Max	ССС	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:26														
In situ Parameters															
Water Temperature (°C)	11.04														
Dissolved Oxygen (mg/L)	10.67												>7		
Specific Conductance (mmhos/cm)	76									900					
pH (Standard Units)	7.61							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- . USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below confluence with powerhouse	June	Flag			s Criteria (USEPA) 1 c Life Protection	Aml	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE /ater Standards	EPA .	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	, ,
Time	9:35		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm)	16.04 9.19 95									900			>7		
pH (Standard Units) Turbidity (NTU)	7.82 1.6							6.5-9.0		5			6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below confluence with powerhouse	July	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) 3	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:03														
In situ Parameters															
Water Temperature (°C)	19.52														
Dissolved Oxygen (mg/L)	8.36												>7		
Specific Conductance (mmhos/cm)	134									900					
pH (Standard Units)	8.06							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.4									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic [ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC5 (South Cow Creek below confluence with powerhouse	August	Flag			s Criteria (USEPA) 1 c Life Protection	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) ³	USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	18:35														
In situ Parameters															
Water Temperature (°C)	23.40														
Dissolved Oxygen (mg/L)	7.76												>7		
Specific Conductance (mmhos/cm)	137									900					
pH (Standard Units)	8.05							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.5									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
 USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC5 (South Cow Creek below confluence with powerhouse	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q	Recommended 2 uality Criteria Life Protection	Cal Dept. Health (USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	7:29 14.27 9.54 138 7.85 0.3		ccc	CMC	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L) Zinc (mg/L)	0.45000 0.09930 <0.002 0.09300 0.00200 <4.41000 <0.008 <0.02 0.48000 0.00600 0.19100 <0.002 3.99E-04 0.022000 <0.002	DNQ	1.8104 6.6761 1.9327 85.9865	2.9045 9.6800 49.5966 85.9865 340 2.7894 9.2928 42.0608	2.0697 1.75925	0.20248 6.6761 1.9327 85.9865 150 0.18737 6.4090 1.6390 0.77	1.43269 9.6800 49.5966 85.9865 340 1.3759 9.2928 42.0608 1.40	1.9298 1.64031	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1.300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) 10 Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	130 <0.05 67.6 0.6 0.0 0.1 65.0 109.0 <0.0050		0.0052 0.014	0.022		2.99 230 ≥ 20 0.0052 0.014	7.41 860		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

Time			C	CF1 (Cow Cree	k Forebay)			
March March May June July August A						2002		
Time						2003		
Time		Marc	h	May	Iuna	Inly	August	Octo
In situ Parameters		Iviaic		Wilay	June	July	August	Octo
Water Temperature (°C)	Time	8:00		8:18	7:52	8:16	17:36	9:1
Water Temperature (°C)								
Dissolved Oxygen (mg.L)	In situ Parameters							
Dissolved Oxygen (upcl.) 10.73	Water Temperature (°C)	5.47		10.00	14.80	20.20	10.47	13.9
Specific Conductance (jumbocken) 69					++			8.6
Turbulay (NTU)								12
Depth (M)							8.38	7.8
Total Coliform (MPN-100 mL)								0
Total Coliform (MPN/100 mL)	Depth (M)	1.0		1.0	1.0	1.0	1.0	1.
Feat Coliferm (MPN/100 mL)	Analytical Parameters							
Feat Coliferm (MPN/100 mL)	Total Coliform (MPN/100 mL)	500		NS	NS	NS	NS	>160
Assenie (gg/L)	` '	_						28
Assenie (gg/L)	Total Matals							
Barrum (mg/L)		<0.30	DNO	NS	NS	NS	NS	0.4
Copper (sgrL)				NS				0.007
Liead (gg/L)								< 0.00
Manganese (µg/L)								0.05
Silver (ugrL)								<0.00
Dissolved Metals:								<0.00
Assence (ggf.)								2.9
Assenic (ggf.)	, ,							
Barium (mg/L)		<0.20	DNO	NC	NC	NC	NC	0.4
Cadmium (µg/L)			DNQ					0.006
Copper (ug/L)								< 0.00
Lead (tig/L)	Copper (µg/L)							0.11
Manganese (µg/L)			DIVO					0.043
Mercury (ug/L)			DNQ					<0.00
Silver (µg/L)								0.00042
Ammonia - Total (mg/L)								< 0.00
Total Hardness, as CaCO3 (mg/L)	Zinc (μg/L)	0.24		NS	NS	NS	NS	<0.0
Total Hardness, as CaCO3 (mg/L)	Ammonia - Total (mg/L)	< 0.05		NS	NS	NS	NS	<0.0
Fluoride (mg/L)								59
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)						NS	NS	0.5
Alkalinity - Total (mg/L)					++			0.02
Total Dissolved Solids (mg/L)								0.058
Total Suspended Solids (mg/L)								10
Total Phosphorous (mg/L)								1.
Total Calcium (mg/L)	Total Phosphorous (mg/L)	< 0.03		NS	NS		NS	0.016
Total Magnesium (mg/L) 2.95 NS NS NS NS Total Sodium (mg/L) 2.51 NS NS NS NS Dissolved Calcium (mg/L) 6.68 NS NS NS NS Dissolved Magnesium (mg/L) 2.87 NS NS NS NS Dissolved Sodium (mg/L) 2.52 NS NS NS NS Dissolved Sodium (mg/L) 2.52 NS NS NS NS Total Boron (mg/L) <0.010 NS NS NS NS Cyanide (mg/L) <0.0050 NS NS NS NS NS Molybdenum (mg/L) <0.0050 NS NS NS NS NS Aroclor 1016 (μg/L) <1.0 NS NS NS NS NS Aroclor 1221 (μg/L) <1.0 NS NS NS NS NS Aroclor 1224 (μg/L) <1.0 NS NS NS NS NS Aroclor 1246 (μg/L) <1.0 NS NS NS NS NS Aroclor 1246 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS NS NS Aroclor 1260 (μg/L) <1.0 NS NS NS NS NS NS NS N								0.032
Total Sodium (mg/L)								11.3
Dissolved Calcium (mg/L)								6.6
Dissolved Magnesium (mg/L) 2.87 NS NS NS NS NS NS NS N								11.3
Total Boron (mg/L)	Dissolved Magnesium (mg/L)	2.87		NS	NS	NS	NS	6.9
Cyanide (mg/L) <0.0050 NS NS NS NS	, , ,							4.7
Molybdenum (mg/L)								<0.005
PCBs NS NS NS NS Aroclor 1016 (μg/L) <1.0								<0.005
Aroclor 1016 (μg/L) <1.0 NS NS NS NS Aroclor 1221 (μg/L) <1.0	(mg/2)	10.0000		1	110	1	1.0	10.002
Aroclor 1221 (μg/L) <1.0								
Aroclor 1232 (μg/L) < 1.0 NS NS NS NS Aroclor 1242 (μg/L) < 1.0								<0
Aroclor 1242 (μg/L) < 1.0 NS NS NS NS Aroclor 1248 (μg/L) < 1.0								<0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								<0
Aroclor 1254 ($\mu g/L$)								<0
Aroclor 1268 (µg/L) <1.0 NS NS NS NS NS S S S S S S S S S S S S		<1.0		NS				<0
J = Estimated concentration below the reporting limit (RL) and above the method detection limit (MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL by the analytical laboratory.								<0
calculation, the RL is normally set to 5 to 10 times the MDL by the analytical laboratory.	Aroclor 1268 (μg/L)	<1.0		NS	NS	NS	NS	<0
calculation, the RL is normally set to 5 to 10 times the MDL by the analytical laboratory.				1	++			+
calculation, the RL is normally set to 5 to 10 times the MDL by the analytical laboratory.	J = Estimated concentration below the rep	orting limit (I	RL) and a	bove the method de	etection limit (MDL).	the MDL is based on a	statistical	
DNO = Detected above MDL and below RL, but not quantified (Marine Pollution Studies Laboratory) Value listed as less than the RL								
NS = Constituent not sampled for during monitoring program				Marine Pollution S	tudies Laboratory). '	Value listed as less than	the RL.	

		Statistics	
	MAX	MIN	AVG
	20.29	5.47	12.42
	10.73	7.28	9.33
	128.00 8.05	61.00 7.23	94.75 7.67
	4.40	0.80	2.97
	1.00	1.00	1.00
	0.42	0.42	0.42
	0.42	0.0065	0.0068
	0	0	#DIV/0!
	0.309	0.056	0.1825
	0.032 9.12	0.032 4.61	0.032 6.865
	9.12	0	#DIV/0!
	2.92	0.4	1.66
	0.44	0.44	0.44
	0	0	#DIV/0!
	0.275 0.0433	0.116 0.021	0.1955 0.03215
	0.0433	0.021	#DIV/0!
	0.00208	0.000426	0.001253
	0.24	0 0.24	#DIV/0! 0.24
	0.21	0.21	
	0	0	#DIV/0!
	59.8 0.58	28.4 0.43	44.1 0.505
	0.00	00	0.000
	0.0586	0.0437	0.05115
	58 101	33.9 72	45.95 86.5
	1.9	1.2	1.55
	0.0164	0.0164	0.0164
	0.0326	0.0177	0.02515
-	11.3 6.68	6.94 2.95	9.12
	4.48	2.95	4.815 3.495
	11.3	6.68	8.99
	6.95	2.87	4.91
	4.72	2.52	3.62

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	March	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended ² Quality Criteria	Cal Dept.	of Public CDPH) 3	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection			Life Protection	,		ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	8:00 5.47 10.73 69 7.23 3.7		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.30 0.00650 <0.002 0.30900 0.03200 4.61000 <0.008 0.40000 <0.30 <0.002 0.27500 <0.01 2.08E-03 <0.008 0.24000	DNQ DNQ DNQ	0.9163 3.1819 0.6408 41.2395 150 0.8812 3.0547 0.6244 40.6621	1.0920 4.2758 16.4439 41.2395 340 1.0884 4.1048 16.0233	0.4657 0.39585	0.10649 3.1819 0.6408 41.2395 150 0.10241 3.0547 0.6244 0.77 40.6621	0.59330 4.2758 16.4439 41.2395 340 0.5913 4.1048 16.0233 1.40 40.3322	0.4342 0.36908	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	11 <0.05 28.4 0.4 0.2 0.0 33.9 72.0 <0.0050 0.0		0.0052 0.014	0.022		5.30 230 ≥ 20 0.0052 0.014	19.06 860		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	May	Flag			es Criteria (USEPA) 1	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	8:18		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters	6.16														
Water Temperature (°C)	10.00														
Dissolved Oxygen (mg/L)	10.70												>7		
Specific Conductance (mmhos/cm)	61									900					
pH (Standard Units)	7.59							6.5-9.0					6.5-8.5		
Turbidity (NTU)	< 0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of Californic Lilifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- . CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	June	Flag			es Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) 3	USE /ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	7:52		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	14.80 8.48												>7		
Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	83 7.56 1.7							6.5-9.0		900 5			6.5-8.5		

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	July	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept	of Public CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Fresh	water Aquat	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:16														
In situ Parameters															
Water Temperature (°C)	20.29														
Dissolved Oxygen (mg/L)	7.28												>7		
Specific Conductance (mmhos/cm)	121									900					
pH (Standard Units)	8.05							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.4									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Ulifornia Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CCF1 (Cow Creek Forebay)	August	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (0	CDPH) 3	USE ater Standards	EPA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	17:36		ccc	CMC	Instantaneous Max	ccc	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbiditv (NTU)	19.47 8.85 120 8.38							6.5-9.0		900			>7 6.5-8.5		

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria
NS = Constituent was not sampled for during this month
CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

CANC = Maximum concentration (1-hour average)

1. USEPA Marc Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)

2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.

4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CCF1 (Cow Creek Forebay)	October	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (CDPH) ³		EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fres	hwater Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump
Time	9:10														
In situ Parameters															
Water Temperature (°C)	13.90														
Dissolved Oxygen (mg/L)	8.60												>7		
Specific Conductance (mmhos/cm)	128									900					
pH (Standard Units)	7.82							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	0.42000	DNQ							50		10				
Barium (mg/L)	0.00710								1		2			1.0	
Cadmium (mg/L)	< 0.002		1.6442	2.5293		0.18489	1.26480		5		5				
Copper (mg/L)	0.05600		6.0120	8.6240		6.0120	8.6240		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	< 0.002		1.6534	42.4298		1.6534	42.4298		15		15				
Manganese (mg/L)	9.12000									50		50			
Silver (mg/L)	< 0.008				1.6762			1.5629		100					
Zinc (mg/L)	2.92000		77.5024	77.5024		77.5024	77.5024			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	0.44000	DNQ	150	340		150	340								
Cadmium (mg/L)	< 0.002		1.5300	2.4421		0.17205	1.2212								
Copper (mg/L)	0.11600		5.7716	8.2790		5.7716	8.2790								
Lead (mg/L)	< 0.002	DNQ	1.4317	36.7408		1.4317	36.7408								
Mercury (mg/L)	4.26E-04					0.77	1.40								
Silver (mg/L)	< 0.008				1.42477			1.32845							
Zinc (mg/L)	< 0.02		76.4174	75.7974		76.4174	75.7974								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) 10	280												200/400		
Ammonia - Total (mg/L) 5	< 0.05					3.10	7.82								
Total Hardness, as CaCO3 (mg/L)	59.8														
Chloride (mg/L) 9	0.6					230	860			250		250			
Fluoride (mg/L)	0.0								2		4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.1								10		10				
Alkalinity - Total (mg/L)	58.0					≥ 20									
Total Dissolved Solids (mg/L)	101.0									500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15		0.2			0.7	220
			0.014			0.014			0.5		0.5		1	0.00017	0.00017

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

HG1 Water Quality	HC1 (I		D 1)			
	HGI (F	Iooten Gulch bel	ow Powerhouse)			
			2	003		
	March	May	June	July	August	October
Time	NS	10:18	7:30	7:39	18:11	8:20
In situ Parameters						
Water Temperature (°C)	NS	10.99	15.30	19.10	18.41	14.05
Dissolved Oxygen (mg/L)	NS	10.73	9.34	8.46	9.95	9.88
Specific Conductance (µmhos/cm)	NS	92	89	122	122	129
pH	NS	7.87	7.71	7.97	8.52	7.79
Turbidity (NTU)	NS	0.1	1.6	1.8	0.0	0.0
Depth (M)	NS	1.0	1.0	1.0	1.0	1.0
NS = Constituent not sampled for during a						

	Statistics		
BRAY	B. ALIN I	41/0	
MAX	MIN	AVG	
19.10	10.99	14.71	
10.73	8.46	9.69	
129.00	92.00	114.33	
7.97	7.79	7.88	
1.80	0.00	0.63	
1.00	1.00	1.00	
			1

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	March	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended ² Quality Criteria	Cal Dept. Health (CDPH) 3	USE	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	
			Fresh	water Aquation	Life Protection	Freshy	water Aquation	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	May	Flag			es Criteria (USEPA) 1 c Life Protection	Aml	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) 3	USE /ater Standards	PA	RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
			ссс	СМС	Instantaneous Max	ССС	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:18														
In situ Parameters															
Water Temperature (°C)	10.99														
Dissolved Oxygen (mg/L)	10.73												>7		
Specific Conductance (mmhos/cm)	92									900					
pH (Standard Units)	7.87							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California Unifornia Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	June	Flag			es Criteria (USEPA) 1	Aml	oient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (CDPH) 3	USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	7:30 15.30 9.34 89 7.71 1.6		CCC	СМС	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131) 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	July	Flag	California Toxics Rules Criteria (USEPA) 1			USEPA National Recommended 2 Ambient Water Quality Criteria			Cal Dept. of Public Health (CDPH) ³		USEPA		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,	<i>'</i>		Freshwater Aquatic Life Protection			Freshwater Aquatic Life Protection			Drinking Water Standards				Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:39														
In situ Parameters															
Water Temperature (°C)	19.10														
Dissolved Oxygen (mg/L)	8.46												>7		
Specific Conductance (mmhos/cm)	122									900					
pH (Standard Units)	7.97							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.8									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

HG1 (Hooten Gulch below Powerhouse)	August	Flag	California Toxics Rules Criteria (USEPA) 1 Freshwater Aquatic Life Protection		USEPA National Recommended 2 Ambient Water Quality Criteria Freshwater Aquatic Life Protection			Cal Dept. of Public Health (CDPH) ³ Drinking V		USEPA Water Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters	
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	18:11														
In situ Parameters															
Water Temperature (°C)	18.41														
Dissolved Oxygen (mg/L)	9.95												>7		
Specific Conductance (mmhos/cm)	122									900					
pH (Standard Units)	8.52							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Primary and Secondary MCL = Maximum contaminant levels (MCLs), primary MCLs are health based criteria and secondary MCLs are human welfare based criteria Shaded cells represent exceedances of the criteria CCC = Continuous concentration (4-day average)

- CCC = Continuous concentration (1-day average)

 CMC = Maximum concentration (1-hour average)

 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)

 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.

 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

 NS = Constituent not sampled for during monitoring program

HG1 (Hooten Gulch below Powerhouse)	October	Flag	California Toxics Rules Criteria (USEPA) 1 Freshwater Aquatic Life Protection			USEPA National Recommended 2 Ambient Water Quality Criteria Freshwater Aquatic Life Protection			Cal Dept. of Public Health (CDPH) ³		USEPA		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
									Drinking Water Standard			Standards C		Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump
Time	8:20														
In situ Parameters															
Water Temperature (°C)	14.05														
Dissolved Oxygen (mg/L)	9.88												>7		
Specific Conductance (mmhos/cm)	129									900					
pH (Standard Units)	7.79							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- L. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131) 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)

- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
 Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
 Constituent not sampled for during monitoring program