

Kilarc Diversion Dam Geomorphic Assessment

PREPARED FOR: Pacific Gas and Electric Company under contract to CH2M Hill

PREPARED BY: North State Resources, Inc.

DATE: May 20, 2008

This technical memorandum provides an assessment of the sediment stored behind Pacific Gas and Electric Company's (PG&E's) Kilarc Diversion Dam in support of PG&E's planned decommissioning of the Kilarc portion of Kilarc-Cow Creek, FERC Project No. 606. The assessment focuses on the particle size distribution, potential for trace metal accumulations, and potential scour volume of these depositional materials. This memorandum is organized as follows:

- Introduction
- Background
- Methods
- Results
- Recommendations

Introduction

North State Resources, Inc. (NSR) prepared this Technical Memorandum to provide an assessment of depositional materials (sediment) stored in the impoundment created by the Kilarc Diversion Dam. This assessment relies on information and data obtained during field investigations at the impoundment in December 2007 and March 2008, supplemented by the results of laboratory analysis.

The report includes recommendations for decommissioning with respect to sediment release and the excavation and storage of stored sediment. Data collected for this assessment will be used to assist PG&E in determining potential impacts to the environment associated with future sediment management actions.

Background

Under the direction of PG&E, NSR collected bulk samples from the sediments stored behind the Kilarc Diversion Dam. These bulk samples were used to determine the particle size distribution of sediment stored behind the dam. NSR also conducted a screening-level site assessment using the Buchman (1999) criteria for trace metals to determine the presence or absence of mercury (Hg), methylmercury (MeHg), copper (Cu), Silver (Ag), and arsenic (As) within the stored sediment. This screening-level assessment indicated elevated Cu results, and additional laboratory analysis for this metal was conducted. Finally, NSR surveyed the topography of the sediment deposit and the longitudinal profile of the stream channel upstream and downstream of the dam.

Methods

This assessment was prepared by Jim Fitzgerald, Certified Engineering Geologist (#2436), with support from other NSR staff in accordance with standard industry practices for sites of this type and Business and Professions Code section 7800 et seq. (California Geologists and Geophysicists Act). All field work described in the following paragraphs was performed in December 2007 and April 2008.

To characterize the horizontal and vertical distribution of stored sediment, boreholes were located at representative locations across the area of the deposit in a manner that would account for spatial variation in the texture of the substrate. The sampling scheme was designed to determine the heterogeneity of the depositional features associated with the diversion dam. Within the stratified sampling area, the boreholes were located by sedimentary facies (e.g., gravel bar versus thalweg) and bored vertically. The bulk and trace metal sediment samples were taken from boreholes that penetrated gravel with at least some fine sediment less than 2 millimeters (mm) in diameter.

Four bulk sediment samples were collected from alluvial deposits stored behind the Kilarc Diversion Dam. The borehole locations were chosen to best represent the depositional features associated with the stored sediment. The borehole locations were limited by the abundance of boulder size material at the surface and the depth and velocity of Old Cow Creek. Figure 1 illustrates the locations of the boreholes relative to the diversion dam.

The bulk sediment samples were dried and sieved at the Graham Matthews Associates (GMA) sediment laboratory using the sieve mesh sizes listed in Table 1; the particles trapped in the sieves were measured to determine the percentile of particle distribution and weighed to determine the cumulative percent dry weight. Appendix A provides laboratory results received from GMA.

The sediment dry weight by particle size was also calculated by proportioning the in-place volume of stored sediment using the bulk sample particle size results. Because the boreholes were shallow (i.e., < 2 feet (ft)), this assessment assumes that the averaged particle size results represent the distribution of the entire volume of stored sediment.

Bulk sediment samples K-I, K-II, and K-III were collected from a gravel bar on the upstream northeast side of the diversion dam. Sample K-IV was collected near the thalweg 20 ft upstream of the diversion dam (Figure 1). The depth of the boreholes was limited to about 2 ft due to the large cobble and coarse gravel texture of the stored sediment. Near the dam, the boreholes penetrated the top 10% of the deposit. A high fraction of the substrate is boulder size material (> 300 mm) based on visual observations.

The trace metals assessment analyzed the samples for total solids and the dry weight concentration of Hg, MeHg, Cu, Ag, and As. The samples were field sieved, and sand size material (i.e., < 2mm) was collected in Certified Precleaned plastic jars with Teflon lids and sent to Brooks Rand Laboratory for

Table 1. Sieve Mesh Size Breaksfor Particle Size Analysis		
U.S. Standard Sieve Mesh Size (mm)	Wentworth Scale Size Gradation	
256	Cobble large	
180		
128	Cobble small	
90		
64	Cobble-gravel break	
45	Gravel very coarse	
31.5		
22.4	Gravel coarse	
16		
11.2	Gravel medium	
8		
5.6	Gravel fine	
4		
2.8		
2	Gravel-sand break	
0.063	Sand-silt break	
Pan		

analysis. The sediment sample volume was between 8 and 12 ounces per sample. Appendix B provides the laboratory results for trace metals received from Brooks Rand Laboratory.

Two of the sediment samples were used to measure Hg, MeHg, Ag, and As; these samples were collected from boreholes K-II and K-III, as shown on Figure 1. Due to the lack of silt/clay present in the borehole samples, the maximum sample particle size had to be increased from < 0.063 mm to < 2 mm to obtain an adequate sample volume.

Four of the sediment samples were used to measure total Cu and leachable Cu; these samples were collected from boreholes K-I, K-II, K-III, and K-IV (Figure 1). These samples were collected as described above for the other trace metals. Like for the other trace metal samples, attempts were made to collect sediment less than 0.063 mm (silt and clay). Only sample K-I had enough silt/clay to collect the minimum sample volume required for trace metal analysis (about 10 grams).

Leachable Cu was analyzed at the Brooks Rand Laboratory using the weak acid leachate test described by Giddings et al. (2001) (Appendix B). This test extracts the Cu that is weakly adsorbed to the sediment surface by running a weak hydrochloric acid over the sample for a fixed amount of time and measuring the resulting dissolved Cu concentration.

Trace metal sediment quality criteria published by the National Oceanic and Atmospheric Administration (NOAA) (Buchman 1999) and the Canadian Council of Ministers of the Environment (2000) and concentrations reported by the U.S. Geological Survey (USGS) (2001) were used as "screening" values since specific sediment quality standards have not been established by the State of California. The NOAA and Canadian criteria were not developed for regulatory purposes; rather, they were established as screening values to be used as part of geochemical investigations to determine the relative importance of the trace metal concentrations and likelihood of adverse biological effects.

The measured concentrations of metals in sediment samples (< 0.063 mm in diameter) taken from behind the Kilarc Diversion Dam were compared to the NOAA and Canadian trace metal sediment screening values and the concentrations reported by USGS (2001). The NOAA publication summarizes existing trace metal data and reports the range of background concentrations, the Threshold Effects Level (TEL), Probable Effects Level (PEC), and Upper Effects Threshold (UET) (Buchman 1999). The Canadian guidelines offer two trace metal risk levels: a lower value called an interim sediment quality guideline (ISQG) and an upper value called the probable effect level (PEL) (Canadian Council of Ministers of the Environment 2000).

The NOAA and Canadian studies indicate that trace element concentrations below the TEL and ISQG are unlikely to be associated with adverse biological effects; conversely, concentrations above the PEC and PEL are likely to be associated with adverse biological effects. Trace element concentrations between the ISQG and PEL fall within the range where effects are possible (Buchman 1999). These trace metal sediment quality guidelines are used in this investigation as screening values that can be used to develop and focus management decisions. The concentration of leachable Cu was used to assess the potential for solid Cu to enter the water column and degrade water quality. According to Giddings et al. (2001), the weak acid leachate test, described above, is intended to provide a more conservative estimate of trace metal availability to compare with water quality objectives.

At Kilarc Diversion Dam, the surface topography of stored sediment was surveyed, and longitudinal channel profiles were surveyed upstream and downstream of the dam. The survey was completed using a Nikon 522 Total Station. A measurement precision of ± 0.01 ft for control points and ± 0.1 ft for foreshots was achieved. The Total Station is accurate to ± 0.01 ft at 500 ft and ± 0.1 ft at 1,000 ft. Known local control points were surveyed to help ensure horizontal and vertical accuracy relative to the established benchmark elevations (located on the dam abutment wall).

A total of 741 ft of water course was surveyed using the Total Station. A total of 487 individual points, each measuring the northing, easting, and elevation of a specific point, were used to measure the topography of stored sediment, the thalweg bed surface, the diversion dam, and downstream right and left bankfull features. The surveyed horizontal position coordinates were translated to latitude and longitude using the Northern American Horizontal Datum 1983 (feet), State Plain, California Zone 1 datum. The surveyed elevations were translated to feet above mean sea level using the National Geodetic Vertical Datum 1929.

At a minimum, survey points were collected when surface topography changed plus or minus 0.5 ft. Three local benchmarks were surveyed to help ensure horizontal and vertical accuracy relative to the established benchmark elevation (BM-1- PG&E Survey Cap, 3840.00 feet above sea level). Two benchmarks are established on each of the diversion dam abutments and a third is established on a large boulder well above flood stage on the right bank near the diversion dam's right abutment. The surface topography was surveyed in enough detail to produce a 1 ft interval contour map (Figure 2).

The longitudinal profile survey extended 270 ft upstream and 471 ft downstream of the diversion dam and measured the stream channel thalweg, slope breaks, and stable control points. The longitudinal profile survey measured elevation points at intervals sufficient to characterize all local changes in bed gradient.

The in-place volume and weight of stored sediment were calculated by subtracting the volume of cut between the Triangular Irregular Network (TIN) surface layer and the projected TIN subsurface layer using spatial data incorporated into a GIS project. The TIN subsurface layer represents the horizontal and vertical scour potential. The actual depth of the stored sediment was only measurable just upstream of the dam and at the scour control point. The horizontal extent and vertical depth of scour were estimated using the longitudinal profile, potential scour grade trend line, upper bank slope, and visual field observations. The subsurface contours were generated using these results and represent the potential topography of the bed and bank of Old Cow Creek if the dam is removed. The accuracy of the TIN layers is limited to a 2-ft contour interval. The accuracy of the surface TIN layer is ± 1 ft and the accuracy of the subsurface TIN layer is ± 2 ft (Figures 2 and 3).

Results and Discussion

Bulk Sample Particle Size

The percentile of particle distribution (d_x) was calculated for each bulk sample (Table 2). Within the sample set, particle size distributions ranged from a minimum d_5 of 0.27 mm (sample K-I) to a maximum d_{90} of 228.7 mm (K-III). The averaged median size (d_{50}) for all bulk samples is 48.1 mm with an average d_5 of 2.3 mm and an average d_{90} of 119.8 mm. In order of increasing d_{50} size, the ranks of the samples are K-I, K-IID, K-III, and K-IV.

Table 2. Kilarc Diversion Dam Bulk Sediment Sample Particle SizeDistribution Percentile Statistics					
			Sample ID		
Percentile of Particle Distribution	K-I Gravel Bar Near Bank (mm)	K-II Mid-Gravel Bar (mm)	K-IID Mid- Gravel Bar (Duplicate) (mm)	K-III Mid- Gravel Bar Behind Upstream Side of Dam (mm)	K-IV Thalweg Near Canal Diversion Intake (mm)
D5	0.27	0.56	0.58	1.43	8.42
D16	0.88	4.28	3.66	6.99	24.44
D25	2.13	8.89	10.16	14.62	38.79
D35	4.15	13.29	15.51	25.84	64.76
D50	8.69	20.19	24.36	70.20	117.28
D65	17.99	32.07	37.15	114.93	140.21
D75	28.68	41.30	48.43	193.07	150.58
D84	45.05	52.83	66.71	213.71	160.57
D90	54.85	62.72	85.19	228.68	167.60

For Quality Assurance and Quality Control purposes, samples K-II and K-IID are duplicate samples and have an average size difference of 15.1% in similar statistical divisions. The samples have a 20.7% difference in d_{50} values with a low difference of -14.7% (d_{16}) and a high difference of 35.8% (d_{90}). Each bulk sample was collected from visibly different sedimentary facies starting from the thalweg (K-IV) to the outside of the gravel bar (K-I) immediately upstream and adjacent to the dam (Figure 1). The particle size (from d_5 to d_{65}) for all samples decreased as distance from the thalweg increased. However, D_{75} , D_{84} , and D_{90} are higher in the sample collected from the gravel bar just upstream of the dam (sample K-III) than from the sample collected from thalweg (sample K-IV). Sample K-III has the highest d_{90} (228.7 mm), but visual observations indicate that the largest particles (boulders) are located in the thalweg (sample K-IV) and that these particles were too large to sample. The decrease in particle size from K-III to K-IV may indicate a sampling bias simply because the large boulders in the thalweg were too large to remove or because the large boulders at samples locations K-II, K-III, and K-IV made it difficult to extricate a representative sample. This means that the bulk sample results under-represent the proportion of the stored sediment that is larger than 300 mm in diameter.

The particle size analysis data from the four bulk samples were used to group particles into four size categories: greater than 64 mm (cobble-boulder); 2–64 mm (gravel); 2–0.063 mm (sand); and less than 0.063 mm (silt/clay) (Table 3). Each sample was classified using the Wentworth Scale (Table 1). All of the samples were classified as cobble or gravel. Visual field observations show that there is a fifth particle size class made up of material greater than 300 mm that could not be bulk sampled. This larger size class represents between 40% and 50% of the stored sediment. Therefore, Table 3 under-represents the proportion of material in the boulder size class.

Table 3. Summary of Percent Cobble +, Gravel, Sand, and Silt by Weight for Bulk Samples

from Old Cow (Creek Near Kilard	c Diversion			
			Site ID		
Particle Size Category	K-I Gravel Bar Near Bank (%)	K-II Mid-Gravel Bar (%)	K-IID Mid-Gravel Bar (duplicate) (%)	K-III Mid-Gravel Bar Behind Upstream Side of Dam (%)	K-IV Thalweg Canal Diversion Intake (%)
Boulder-cobble >64mm	5.3	9.3	17.0	52.4	65.3
Gravel 64mm–2mm	70.6	79.2	70.6	41.2	33.9
Sand 2mm–063mm	23.6	11.3	12.2	23.6	23.6
Silt <.063	0.5	0.2	0.2	0.1	0.0
Wentworth Classification	Fine gravel	Medium gravel	Coarse gravel	Gravelly cobble	Gravelly cobble

For all of the bulk samples, about 10% of the dry weight is sediment less than 2 mm. There is very little to no silt/clay size sediment (all samples less than 0.5%) (Table 3). Silt/clay size sediment (< 0.063 mm) constitutes 0.2% of the average dry weight, with a maximum dry weight of 0.5% and a minimum of 0.0% (Table 3). Particles between 0.063 mm and 2 mm (sand) comprise 18.9% of the dry weight of all the combined bulk samples, with a maximum of 23.6% and a minimum of 11.3%. For particle sizes greater than 64 mm (cobble), the average cumulative percent by weight for all bulk samples is 29.9%, with a

maximum of 65.3% and a minimum of 5.3%. Particles between 2 mm and 64 mm (gravel) have an average dry weight of 59.1%, with a maximum of 79.2% and a minimum of 33.9%.

The particle size data statistics indicate that the proportion of cobble size particles decreases and the proportion of silt size particles increases as the horizontal distance from the thalweg increases. There are no measurable differences in the percentage of sand (11.5%) for samples collected from active gravel bars. The relative amount of cobble size material increased 35% between the mid-channel gravel bar at the upper end of the diversion pool (sample K-II) and the mid-channel gravel bar located directly unstream of the dam (sample K-III) (Figure

upstream of the dam (sample K-III) (Figure 1)

Trace Metal Sediment Geochemistry

Two Hg, MeHg, Cu, Ag, and As sediment samples were collected at the Kilarc Diversion Dam from boreholes K-II and K-III taken from the gravel bar (Figure 1).

Table 4. Kilarc Diversion Dam Bulk Sediment SampleTrace Metal Results					Sample
Sample ID	% Total Solids	Hg (ng/g)	MeHg (ng/g)	Ag 107 (mg/kg)	As 75 (mg/kg)
K-II	75.3	4.1	0.01	0.2	1.1
K-III	75.5	3.5	0.01	0.2	0.7

Detectable amounts of Hg, MeHg, Ag, and As were measured (Table 4 and Appendix B).

Field observations and geochemical data indicate that there is a low potential to release Hg, MeHg, Ag, and As from the depositional material stored behind the Kilarc Diversion Dam (Table 4). Overall, the geochemical data suggest that sediment samples have concentrations of these measured trace metals near background levels and below the published TEL and PEL sediment quality guidelines described above. The concentration of Cu, however, was elevated in both samples.

The concentrations of Hg and MeHg are not elevated in sediments stored behind the Kilarc Diversion Dam and are near background levels according to the NOAA and Canadian sediment quality standards (Table 4) where background = 4-51 mg/kg; TEL = 174 mg/kg; and PEL = 486 mg/kg.

The concentration of Ag is not elevated in sediments stored behind the Kilarc Diversion Dam and is near background levels according to the NOAA and Canadian sediment quality standards where background = <0.5 mg/kg. There is no TEL nor PEL for Ag in freshwater sediments.

The concentration of As is not elevated in sediments stored behind the Kilarc Diversion Dam and is near background levels according to the NOAA and Canadian sediment quality standards where background = 1.1 mg/kg; TEL = 5.9 mg/kg; and PEL = 17 mg/kg.

The trace metal laboratory results suggest that the concentration of Cu adsorbed to sand/silt/clay size material is elevated, and that the concentration of Cu is especially high and soluble (100%) for the silt/clay size fraction stored in mid-channel gravel bars upstream of the diversion dam (Figure 4). For one sample (K-I = 819 mg/kg), the measured concentration of Cu adsorbed to silt/clay for both the total and

leachable Cu analyses is significantly elevated relative to the TEL (35.7 mg/kg) and PEL (197 mg/kg) (Figure 4 and Table 5). All of the other samples are above the TEL for total Cu (Figure 5 and Table 5): however, the leachable Cu results suggest that less than 30% of the total Cu is available to the water column.

Table 5. Kilarc Diversion Dam Bulk Sediment Sample Total Cuand Leachable Cu Results						
ID	% Total Solids	Total Cu (mg/kg dry)	Leachable Cu (mg/kg dry)	% Leachable Cu	TEL	PEL
K-I	6.8	819	1120	100	35.7	197.0
K-II	75.4	58.3	19.1	33	35.7	197.0
K-III	76.1	37.5	7.24	19	35.7	197.0
K-IV	77.2	43.5	8.1	19	35.7	197.0

For sample K-I, the reported leachable Cu is greater than the total Cu concentration. These results are within the margin of error reported by Brooks Rand Laboratory. The lab recognized the anomaly and reports that the results are valid (Appendix B)

Previous water quality monitoring associated with Kilarc-Cow Creek, FERC Project No. 606, measured the pH, total hardness, alkalinity, and total and dissolved Cu concentrations of Old Cow Creek waters upstream and downstream of the diversion dam (PG&E 2008). For two measurements taken in March and October 2003, the measured hardness ranged from 24.5 mg/L to 49.5 mg/L, and the alkalinity ranged from 30 mg/L to 44.8 mg/L, with higher concentrations in October. The pH was measured 12 times between March and October with an average measured value of 8.2, a maximum of 8.3, and a minimum of 7.7. Four water samples were taken in March and October and were analyzed for total and dissolved Cu. The average total Cu was 0.18 μ g/L, and the average dissolved Cu was 0.13 μ g/L, with the higher concentrations in October. Uses a maximum of 2.5 mg/L, with the higher concentrations in October. Other water quality monitoring sites on Old Cow Creek and within the Kilarc Forebay show similar results for hardness, alkalinity, pH, and Cu. These water quality monitoring results suggest that the waters of Old Cow Creek are well buffered (alkalinity > 20 mg/L) and basic (pH > 7.0), and that the total and dissolved Cu concentrations are below the Central Valley Regional Water Quality Control Board (CVRWQCB) Basin Plan (2007) water quality objectives (Cu = 2 μ g/l).

The available sediment and water quality data indicate that Cu adsorbed to fine sediment (< 2 mm) stored behind the Kilarc Diversion Dam is elevated. The Cu assessment results indicate that total and leachable Cu concentrations are highest in the silt/clay (< 0.063 mm) particle size and are above the PEL (Figure 4 and Table 5). The total and leachable Cu concentrations are elevated in sand (< 2 mm) samples but are below the PEL. The stored sediment particle size results and volume calculations indicate that the silt/clay size fraction is less than 0.5% of the measured dry weight of stored sediments and represents a total of less than 0.5 ton of silt/clay material for all of the sediments stored behind the Kilarc Diversion Dam. The available water quality data indicate that Old Cow Creek waters have a high buffering capacity and a high pH that would inhibit the dissolution of weakly adsorbed Cu on fine sediments. The basic waters with high buffering capacity of Old Cow Creek will inhibit the dissolution of weakly adsorbed Cu. This relationship is confirmed by the total and dissolved Cu concentrations measured in Old Cow Creek waters.

The conclusions of the Cu risk assessment are limited by the low number of sediment samples (i.e., 4) and the depth of the boreholes (about 2 ft) relative to the predicted depth of the stored sediments (6–7 ft) (Figure 6). The conclusion that silt/clay represents a small proportion of the stored sediment is qualified by the fact that the boreholes were limited to a maximum 2-ft sampling depth. This assessment assumes that the vertical particle size distribution is relatively homogeneous and that there are no large lenses of fine material stored behind the diversion dam. The depositional history and age of the stored sediments inferred from this assessment suggest that the presence of more fines at depth is unlikely given the coarse bed material of Old Cow Creek. The relatively small size of the impoundment area associated with the dam limits the opportunity for fine material to settle (fines are readily carried in suspension over the dam) and is unlikely to provide opportunities for well-sorted particle size deposits within the vertical stratigraphy. The steep confined stream channel combined with periodic high flows and high bedload transport capacity suggest that the area behind the diversion dam was filled rapidly after the dam was constructed in the early 1900s and that there is likely a similar mixture of predominantly boulder and coarse gravel, with smaller proportions of sand, and silt/clay.

Topographic Survey

Topography

The topographic features of the stored sediments were mapped using the Total Station. A 1.0-ft contour map and a TIN were created from the topographic survey points. The projected lateral and upstream

extent of scour was used to bound the topographic map shown as Figure 2. The area within the map represents the extent of stored sediments that have deposited due to the backwater influence created by the diversion dam.

Longitudinal Profile

Figure 6 is a longitudinal profile of the existing thalweg surface, the diversion dam, and downstream bankfull features. Both the existing and projected bed profiles were created using data collected during the topographic survey (Figure 7). Bankfull stage survey points were collected using clearly identifiable visual indicators such as high-flow scour, lower bank extent of sand deposits, and trapped large woody debris.

The gradient of the entire thalweg bed surface including the elevation differential of the dam is 6.73%. The gradient of the thalweg bed surface upstream of the diversion dam is 5.85%, and the gradient downstream of the dam is 5.31%. There are only two pools that are more than 3 ft deep; both of these pools are more than 7 ft deep and are scoured into boulder material. One of these pools occurs at the 724-ft mark of the survey (Figure 7), and the other is located adjacent to the downstream side of the diversion dam. In both longitudinal profiles, abrupt changes in bed surface topography are caused by large boulders in the active channel that occupy between 40% and 60% of the channel bed (Figure 7).

The longitudinal profile data were used to estimate the potential upstream extent of scour in the event the diversion dam is removed and to estimate the new channel gradient. If the dam is removed, the gradient of the entire thalweg bed surface is estimated to be 6.4%. The scour control point is a theoretical point where upstream scouring (headcutting) would stop if the diversion dam were removed entirely. At this point, the stream channel substrate is boulder and bedrock material. For this study reach, the scour control point is about 112 ft upstream of the diversion dam at an elevation of 3829.09 ft, as shown on Figures 6 and 7.

Sediment Volume and Weight Calculations

The potential scour volume resulting from stream channel incision after removal of the dam was estimated using the surface and subsurface topography layers (Figure 2 and Figure 3). The total volume that would be scoured and transported downstream depends on subsurface conditions not completely determinable during field investigations. The total measured in-place volume of stored sediment was calculated to be about 580 cubic yards (yd³), and the weight of gravel was estimated to be about 1,000 tons. The estimate is based on a conversion factor of 1.6 tons/yd³. The total stored sediment volume was

adjusted using a bulking factor of 1.2 where the gravel volume increases 20% once scoured or excavated.

The particle size distribution results for bulk sediment samples were vertically and horizontally averaged to estimate the dry weight of stored sediment by particle size class. The particle size classes summarized in Table 3 were used to estimate the dry weight of stored sediment. Most of the stored sediment is boulder and gravel size material (Table 6). Visual field observations show that about oneforth of the stored sediment is boulder size material that could not be sampled. Large boulders > 4 ft in diameter will likely stay in place and form the post dam lower banks and stream bed; large boulders represent about 40% of the dry weight of stored

Table 6. Stored Sediment Dry Weight by **Particle Size Class** Dry **Dry Weight** Weight **Particle Size Class** (%) (tons) > 300 mm 401 40 64-300 mm 150 15 25 2-64 mm 251

200

1002.5

0.5

20

0

0.063-2 mm

< 0.063 mm

Total

sediment. Small to medium boulders will likely be shifted around or transported a short distance downstream.

The bed material transported by Old Cow Creek is large (>300 mm) and highly mobile. Field survey results show that between 40% and 50% of the active stream channel is occupied by boulders. Most of the stored sediment will be transported downstream. Sediment that is available for transport is about 40% boulder, 35% cobble and gravel, and 20% sand.

Bulk sample results suggest that about than 20% of the stored sediment is sand (< 2 mm) and that silt/clay represents < than 0.1% of the total estimated dry weight of the sediment. The lack of silt/clay is confirmed by the fact that the maximum particle size of the trace metal samples had to be increased from < 0.063 mm to < 2 mm to obtain an adequate sample volume. Because the particle size classes are averaged, the bulk sample boreholes did not penetrate the lower portions of the stored sediment, and the boulder portion of the stored sediment was not sampled, these calculations are considered estimates with a margin of error of about 30% or \pm 300 tons. The margin of error estimate is approximate and it is high because the boulder portion of the deposit was visually estimated in the field and the bulk sediment samples were biased toward the finer sedimentary deposits. The actual amount of silt/clay is well within this margin of error but is likely to be between 0.5 and 1 ton or < 1 yd³.

The subsurface streambed shown in Figure 3 is an approximation of the pre-dam bed surface and represents a maximum depth of potential scour and the predicted stable channel elevation following dam removal and scour. It will likely take several years for this form to be reached and transport of the stored sediments from the impoundment area will depend on the frequency and magnitude of flood events. A large flood could scour the entire deposit in one water year. Figure 7 illustrates the surface and subsurface longitudinal profile upstream of the diversion dam. The potential depth of scour ranges from 0.5 ft near the control point (Figure 7) to about 8 ft at the diversion dam.

Stream channel cross-sections were created from the topographic data and show the current bed-surface elevation relative to the potential bed-surface elevation. The locations of the cross-sections are shown on Figure 1. The shape of the subsurface cross-section was estimated using the data described above and was developed to pass the bankfull and floodprone high-flow events.

Cross-section X-1 is located about 18 ft upstream from the diversion dam, at which point the bed is predicted to drop between 6 and 7 ft (Figure 3 and Figure 8). The depth of scour will be limited by the presence of large boulders and bedrock that are visible along the lower right and left banks at this cross-section; however, the entire prism of stored sediment is likely to be transported (or excavated) at this point (Figure 8). Cross-section X-2 is located about 40 ft upstream from the diversion dam, at which point the bed is predicted to drop between 3 and 4 ft (Figure 3 and Figure 9), with a side channel forming along the right lower bank. The presence of large boulders in the center of the channel at this point will likely limit the depth of scour and divert flow to the right. Cross-section X-3 is located about 55 ft upstream from the diversion dam, at which point the bed is predicted to drop between 4 and 5 ft (Figure 3 and Figure 10). This cross-section will be entrenched around the thalweg, and bedrock control at this point will cause the stream gradient to increase (Figure 6).

Conclusions and Recommendations

The following recommendations are intended to assist PG&E in refining the alternatives related to removal of the Kilarc Diversion Dam and the dispensation of sediments stored behind it.

Treatment of Stored Sediment

Using the data, results, and assumptions of this assessment, NSR's conclusion is that it would be acceptable to leave the stored sediments in place and allow the stream to scour, transport, and redistribute

these sediments in response to the restored hydrology of Old Cow Creek. This conclusion is based on the best available information. The percentage of fines < 2 mm is likely less than 20% of the total weight of stored sediment and will represent a portion (200 tons) of the bed material stored and transported by Old Cow Creek. The low proportion of silt/clay in the stored sediments as well as the existing water chemistry of Old Cow Creek suggest that concentrations of total and dissolved Cu are unlikely to exceed CVRWQCB Basin Plan objectives if the dam is removed.

Stream Channel Condition

The results of this assessment of scour potential suggest that the stream reaches upstream and downstream of the diversion dam will not be degraded as a result of dam removal. Once the new dynamic equilibrium of the stream channel is reached, the stability and habitat quality within the affected reach of the Kilarc diversion will change, presumably to a more complex riverine reach. NSR recommends mechanically removing as much of the concrete as possible to allow the passage of large cobble and boulder material.

References

- Buchman, M.F. 1999. NOAA Screening Quick Reference Tables. NOAA HAZMAT Report 99-1. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, Seattle, WA. Updated in 2004.
- Central Valley Regional Water Quality Control Board. 2007. Basin Plan at: http://www.swrcb.ca.gov/rwqcb5/water_issues/basin_plans.
- Canadian Council of Ministers of the Environment. 2000. Canadian sediment quality guidelines for the protection of aquatic life. Accessed March 12, 2008, at http://www.ec.gc.ca/CEQG-RCQE/English/Ceqg/Sediment/default.cfm.
- Pacific Gas and Electric Company (PG&E). 2008. Electronic version of the Kilarc-Cow water quality monitoring results.
- Giddings, E.M., Hornberger, M.I., and Hadley, H.K.. 2001. Trace-metal concentrations in sediment and water and health of aquatic macroinvertebrate communities of streams near Park City, Summit County, Utah. U.S. Geological Survey, Water-Resources Investigations, Report 01-4213.
- U.S. Geological Survey (USGS). 2001. Geochemistry of mercury and other trace elements in fluvial tailings upstream of Daguerre Point Dam, Yuba River, California. Scientific Investigations Report 2004-5165.

Figure 1 Kilarc Diversion Dam Borehole Location Map and Representative Photo

North State Resources, Inc.

Figure 3 Kilarc Diversion Dam Subsurface TIN Layer and **Contour Map Showing Location of Cross-Sections** and Potential Scour Volume Calculation Results

North State Resources, Inc.

Figure 4 Kilarc Diversion Dam Showing Total Cu Results By Borehole with Subsurface TIN Layer as Background Showing Potential Scour

Figure 5 Kilarc Diversion Dam Total Cu Results By Borehole Showing 40% Margin of Error, TEL, and PEL Thresholds

Figure 6 Longitudinal Profile Upstream of the Diversion Dam Showing the Present Thalweg Elevation, Potential Elevation After Scour, Visualization of Substrate at Depth, and Pictures of Surface Substrate Looking Toward the Left Bank (Left Picture) and Upstream (Right Picture)

North State Resources, Inc.

Figure 7 Longitudinal Profile of Old Cow Creek at Kilarc Diversion Dam

Figure 8 Stream Channel Cross-Section X-1 Showing the Present Bed Elevation and Potential Elevation After Scour Gravel bar should form along right bank forming a steep upper bank composed of unconsolidated gravel.

Figure 9

Stream Channel Cross-Section X-2 Showing the Present Bed Elevation and Potential Elevation After Scour Thalweg is likely to migrate north along exposed bedrock and boulder material that forms the right bank at this cross-section.

Figure 10 Stream Channel Cross-Section X-3 Showing the Present Bed Elevation and Potential Elevation After Scour

Attachment A

Graham Matthews and Associates Kilarc-Cow Bulk Sample Processing Laboratory Analysis Report

BULK SAMPLE: PARTICLE SIZE ANALYSIS

River: Location: Crew:

Description Sampler

Date Processed: Processed by:

Kilarc Creek

2/21/2008 DM

----- WEIGHT ------

Final Net Sieve Finer than Cum%< % 256 0.0% 100.0% 0.0 256 0.0% 100.0% 180 0.0 128 180 0.0 0.0% 100.0% 100.0% 128 0.0 0.0% 90 100.0% 64 90 1573.0 5.3% 45 64 3190.0 10.7% 94.7% 31.5 45 1960.0 6.6% 84.0% 22.4 31.5 2290.0 7.7% 77.4% 69.7% 16 22.4 2120.0 7.1% 11.2 16 2180.0 7.3% 62.5% 8 11.2 2040.0 6.9% 55.2% 5.6 8 2319.0 7.8% 48.3% 1833.0 5.6 6.2% 40.5% 4 2.8 4 1666.3 5.6% 34.3% 2.8 1360.8 4.6% 28.7% 2 2082.9 7.0% 24.1% 1 2 0.85 1 444.4 1.5% 17.1% 0.5 0.85 1458.1 4.9% 15.6% 1874.6 10.7% 0.25 0.5 6.3% 0.125 0.25 916.5 3.1% 4.4% 1.3% 0.063 0.125 241.6 0.8% Pan 0.063 152.7 0.5% 0.5% Sample # Date Collected: Method of Collection: Surface/Sub-surface Bag # of # K-I 12/12/2007

SIZE PARAMETERS

D5	0.3 mm
D16	0.9 mm
D25	2.1 mm
D35	4.1 mm
D50	8.7 mm
D65	18.0 mm
D75	28.7 mm
D84	45.1 mm
D90	54.8 mm
dg	7.0 mm
FREDLE	1.9 mm
T&B STEELHEAD SURVIVAL	19.6 mm
T&B CHINOOK SURVIVAL	15.6 mm
% LESS THAN 2 mm	24.1%
% LESS THAN 0.85 mm	15.6%

G

ADDITIONAL NOTES:

Dmax=	94.0 mm	
Dmax mass=	355 g	

GRAHAM MATTHEWS & ASSOCIATES Hydrology • Geomorphology • Stream Restoration

BULK SAMPLE: PARTICLE SIZE ANALYSIS

River:	
Location:	
Crew:	
Description	
Sampler	

Kilarc Creek

Date Processed: Processed by:

2/22/2008 BC

GMA -

--- WEIGHT ------

Sieve	Finer than	Final Net	%	Cum%<
256		0.0	0.0%	100.0%
180	256	0.0	0.0%	100.0%
128	180	0.0	0.0%	100.0%
90	128	0.0	0.0%	100.0%
64	90	2392.5	9.3%	100.0%
45	64	3171.0	12.3%	90.7%
31.5	45	3469.5	13.5%	78.4%
22.4	31.5	2766.5	10.7%	64.9%
16	22.4	3480.0	13.5%	54.2%
11.2	16	2800.0	10.9%	40.7%
8	11.2	1790.0	7.0%	29.8%
5.6	8	1232.7	4.8%	22.8%
4	5.6	661.7	2.6%	18.0%
2.8	4	562.0	2.2%	15.5%
2	2.8	453.2	1.8%	13.3%
1	2	953.5	3.7%	11.5%
0.85	1	219.3	0.9%	7.8%
0.5	0.85	652.6	2.5%	7.0%
0.25	0.5	616.3	2.4%	4.4%
0.125	0.25	204.8	0.8%	2.0%
0.063	0.125	268.3	1.0%	1.3%
Pan	0.063	54.4	0.2%	0.2%

Sample # Date Collected: Method of Collection: Surface/Sub-surface Bag # of

UNITS

SIZE PARAMETERS

D5	0.6 mm
D16	4.3 mm
D25	8.9 mm
D35	13.3 mm
D50	20.2 mm
D65	32.1 mm
D75	41.3 mm
D84	52.8 mm
D90	62.7 mm
dg	14.8 mm
FREDLE	6.9 mm
T&B STEELHEAD SURVIVAL	78.3 mm
T&B CHINOOK SURVIVAL	89.0 mm
% LESS THAN 2 mm	11.5%
% LESS THAN 0.85 mm	7.0%

G

K-II

12/12/2007

ADDITIONAL NOTES:

Dmax=	85.0 mm	
Dmax mass=	1639 g	

4.4% 2.0% 1.3% 0.2% GRAHAM MATTHEWS & ASSOCIATES Hydrology • Geomorphology • Stream Restoration

BULK SAMPLE: PARTICLE SIZE ANALYSIS

River:	Kilarc Creek
Location:	
Crew:	
Description	
Sampler	

Date Processed: Processed by:

TOTAL:

2/25/2008 BC

GMA -

WEIGHT

	WEIGHT						
Sieve	Finer than	Final Net	%	Cum%<			
256		0.0	0.0%	100.0%			
180	256	0.0	0.0%	100.0%			
128	180	0.0	0.0%	100.0%			
90	128	2028.0	8.7%	100.0%			
64	90	1960.0	8.4%	91.3%			
45	64	2364.5	10.1%	83.0%			
31.5	45	3292.0	14.0%	72.9%			
22.4	31.5	2713.0	11.6%	58.8%			
16	22.4	2686.0	11.5%	47.3%			
11.2	16	2170.0	9.3%	35.8%			
8	11.2	1260.0	5.4%	26.6%			
5.6	8	599.5	2.6%	21.2%			
4	5.6	488.9	2.1%	18.6%			
2.8	4	493.5	2.1%	16.5%			
2	2.8	470.4	2.0%	14.4%			
1	2	977.7	4.2%	12.4%			
0.85	1	244.4	1.0%	8.2%			
0.5	0.85	728.7	3.1%	7.2%			
0.25	0.5	631.8	2.7%	4.1%			
0.125	0.25	212.1	0.9%	1.4%			
0.063	0.125	60.0	0.3%	0.5%			
Pan	0.063	55.3	0.2%	0.2%			

Sample # Date Collected: Method of Collection: Surface/Sub-surface Bag # of #

SIZE PARAMETERS

UNITS

D5	0.6 mm
D16	3.7 mm
D25	10.2 mm
D35	15.5 mm
D50	24.4 mm
D65	37.2 mm
D75	48.4 mm
D84	66.7 mm
D90	85.2 mm
dg	17.3 mm
FREDLE	7.9 mm
T&B STEELHEAD SURVIVAL	78.7 mm
T&B CHINOOK SURVIVAL	91.9 mm
% LESS THAN 2 mm	12.4%
% LESS THAN 0.85 mm	7.2%

G

ADDITIONAL NOTES:

Dmax=	115.0 mm	
Dmax mass=	2028 g	

Sample Dry Wt 23450 - Total Processed Wt 23436 Net Loss: 14.2 % of Sample: 0.06% 100% 80% **CUMULATIVE PERCENT FINER** 60% 40% 20% 0% 0.1 0.01 100 1000 10 1 **GRAIN SIZE DIAMETER (mm)**

BULK SAMPLE: PARTICLE SIZE ANALYSIS

River: Location: Crew:

Description Sampler

Date Processed: Processed by:

Kilarc Creek

2/19/2008 BC

-- WEIGHT -----~ ′

Sieve	Finer than	Final Net	%	Cum%<
256		0.0	0.0%	100.0%
180	256	10290.0	31.2%	100.0%
128	180	0.0	0.0%	68.8%
90	128	4086.5	12.4%	68.8%
64	90	2892.5	8.8%	56.4%
45	64	732.5	2.2%	47.6%
31.5	45	2094.5	6.4%	45.4%
22.4	31.5	2226.0	6.8%	39.0%
16	22.4	1989.5	6.0%	32.3%
11.2	16	1639.0	5.0%	26.3%
8	11.2	1407.0	4.3%	21.3%
5.6	8	894.1	2.7%	17.0%
4	5.6	982.6	3.0%	14.3%
2.8	4	938.3	2.8%	11.3%
2	2.8	681.6	2.1%	8.5%
1	2	956.0	2.9%	6.4%
0.85	1	173.5	0.5%	3.5%
0.5	0.85	455.0	1.4%	3.0%
0.25	0.5	355.9	1.1%	1.6%
0.125	0.25	109.8	0.3%	0.5%
0.063	0.125	33.6	0.1%	0.2%
Pan	0.063	31.9	0.1%	0.1%

Sample # Date Collected: Method of Collection: Surface/Sub-surface Bag # of #

K-III 12/12/2007

UNITS

SIZE PARAMETERS

D5	1.4 mm
D16	7.0 mm
D25	14.6 mm
D35	25.8 mm
D50	70.2 mm
D65	114.9 mm
D75	193.1 mm
D84	213.7 mm
D90	228.7 mm
dg	41.7 mm
FREDLE	11.5 mm
T&B STEELHEAD SURVIVAL	90.6 mm
T&B CHINOOK SURVIVAL	95.2 mm
% LESS THAN 2 mm	6.4%
% LESS THAN 0.85 mm	3.0%

G

ADDITIONAL NOTES:

Dmax=	210.0 mm	
Dmax mass=	10290 g	

GMA **GRAHAM MATTHEWS & ASSOCIATES** Hydrology • Geomorphology • Stream Restoration

BULK SAMPLE: PARTICLE SIZE ANALYSIS

River:	Kilarc Creek	
Location:		
Crew:		
Description		
Sampler		

Date Processed: Processed by:

2/22/2008 BC

---- WEIGHT ------

Sieve	Finer than	Final Net	%	Cum%<
256		0.0	0.0%	100.0%
180	256	0.0	0.0%	100.0%
128	180	12700.0	47.8%	100.0%
90	128	2391.0	9.0%	52.2%
64	90	2270.0	8.5%	43.2%
45	64	1715.0	6.5%	34.7%
31.5	45	1985.0	7.5%	28.3%
22.4	31.5	1684.0	6.3%	20.8%
16	22.4	1185.5	4.5%	14.5%
11.2	16	862.5	3.2%	10.0%
8	11.2	548.0	2.1%	6.8%
5.6	8	368.4	1.4%	4.7%
4	5.6	315.8	1.2%	3.3%
2.8	4	216.6	0.8%	2.1%
2	2.8	124.7	0.5%	1.3%
1	2	129.6	0.5%	0.8%
0.85	1	17.0	0.1%	0.3%
0.5	0.85	35.6	0.1%	0.3%
0.25	0.5	20.2	0.1%	0.1%
0.125	0.25	6.5	0.0%	0.1%
0.063	0.125	5.3	0.0%	0.0%
Pan	0.063	7.3	0.0%	0.0%

Sample # Date Collected: Method of Collection: Surface/Sub-surface Bag # of

G

K-IV

12/12/2007

UNITS

SIZE PARAMETERS

D5	8.4 mm
D16	24.4 mm
D25	38.8 mm
D35	64.8 mm
D50	117.3 mm
D65	140.2 mm
D75	150.6 mm
D84	160.6 mm
D90	167.6 mm
dg	70.8 mm
FREDLE	36.0 mm
T&B STEELHEAD SURVIVAL	94.7 mm
T&B CHINOOK SURVIVAL	94.2 mm
% LESS THAN 2 mm	0.8%
% LESS THAN 0.85 mm	0.3%

ADDITIONAL NOTES:

Dmax= 160.0 mm Dmax mass= 5820 g

Attachment B

Brooks Rand Labs Trace Metals Analysis Report

March 11, 2008

North State Resources Attn: Jim Fitzgerald 305 Chestnut St Mount Shasta CA 96067 fitzgerald@nsrnet.com

RE: BRL Project Reference: NSR-MS0801 Client Project Reference: P26601

BRL Project ID: 0806042

Mr. Fitzgerald,

This is a report regarding the analysis of nineteen sediment samples received by Brooks Rand Labs (BRL) on February 7, 2008. The requested analyses were mercury (Hg), monomethyl mercury (MMHg), arsenic (As), copper (Cu), and silver (Ag). The analyses for several samples and analytes were cancelled as requested by the client. The samples were received, prepared, analyzed, and stored according to BRL standard operating procedures (SOP) and EPA methodology.

The results were blank-corrected as described in the calculations section of the relevant BRL SOP(s) and may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific method detection limits (MDL), method reporting limits (MRL), and other details.

According to BRL SOP BR0011 for MMHg, samples should be analyzed within 48 hours after preparation. Due to an instrument malfunction at the time of analysis the samples in sequence 0800156 (B080204) were not properly processed. Since the ethylating reagent was already present in the samples, the system was re-started and the samples were analyzed upon return on Monday morning. Based on good recoveries produced by the continuing calibration verification standards (CCV) indicating the system was in control, and two matrix spike/matrix spike duplicate (MS/MSD) sets that met the acceptance criterion, the results have been reported unqualified. Additionally, the results from this sequence match the results from a previous analysis in a different sequence that demonstrated a calibration discrepancy.

An additional blank spike (BS2) was prepared for analysis in sequence 0800161 (B080209). The result for this blank spike did not match the spiking information suggesting that a blank spike from a different batch was actually analyzed. When the alternate spiking information was entered, the blank spike calculated a recovery with the control limits. All certified reference

materials (CRM), MS/MSD sets, and BS1 met their respective criteria and the BS2 has not been reported.

The results less than or equal to the MDL have been qualified "U" for non-detect and have been reported at the MDL. The results above the MDL and less than or equal to the MRL have been qualified "B" and should be considered estimates. All other criteria were met and no additional qualification of the data was required.

BRL, a NELAC accredited laboratory (FL LAB ID E87982), certifies that the reported results meet all NELAC requirements. Please feel free to contact us if you have any questions regarding this report.

Sincerely,

awlei

Amanda Fawley Project Manager amanda@brooksrand.com

Amy Durdle Project Manager amy@brooksrand.com

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

ANALYTICAL REPORT FOR SAMPLES

Sample ID	BRL ID	Date Sampled	Date Received	Matrix
K-llb	0806042-01	12/12/07	02/07/08	Soil/Sediment
K-IIIb	0806042-02	12/12/07	02/07/08	Soil/Sediment
K-IIbM	0806042-04	12/12/07	02/07/08	Soil/Sediment
K-IIIbM	0806042-05	12/12/07	02/07/08	Soil/Sediment
C-III	0806042-07	12/13/07	02/07/08	Soil/Sediment
C-IIIDM	0806042-08	12/13/07	02/07/08	Soil/Sediment
C-I	0806042-10	.12/13/07	02/07/08	Soil/Sediment
C-IM	0806042-11	12/13/07	02/07/08	Soil/Sediment
C-111	0806042-14	12/13/07	02/07/08	Soil/Sediment
C-IIIM	0806042-15	12/13/07	02/07/08	Soil/Sediment

Amy Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

BATCH SUMMARY FOR SAMPLES

Batch	atch Parameter		Analyzed Date	Sequence
B080190	%TS by EPA Method 160.3	02/14/2008	02/15/2008	N/A
B080201	Hg by EPA Method 1631, Appendix	02/20/2008	02/21/2008	0800142
B080202	%TS by EPA Method 160.3	02/20/2008	02/22/2008	N/A
B080204	MMHg by EPA Method 1630 mod.	02/21/2008	02/25/2008	0800156
B080209	As 75 by EPA Method 1638 mod.	02/19/2008	02/27/2008	0800161
B080289	Ag 107 by EPA Method 1638 mod.	02/29/2008	03/02/2008	0800174
B080289	Cu 63 by EPA Method 1638 mod.	02/29/2008	03/02/2008	0800174

ing Dandle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

SAMPLE RESULTS

Total Mercury and Mercury Speciation by CVAFS

	· · · ·	— · · ·		÷					
Analyte	Method	l otal or Dissolved	Result	Qualifier	MDL	MRL	Units	Batch	Sequence
K-IIb	0806042-01 Soil/Sediment								
Hg	EPA Method 1631, Appendix		4.13		0.07	0.24	ng/g dry	B080201	0800142
K-IIIb	0806042-02 Soil/Sediment					,			
Hg	EPA Method 1631, Appendix		3.52		0.08	0.26	ng/g dry	B080201	0800142
K-IIbN	1 0806042-04 Soil/Sediment								
MMHg	EPA Method 1630 mod.		0.011	U	0.011	0.035	ng/g dry	B080204	0800156
K-IIIb	M 0806042-05 Soil/Sediment								
MMHg	EPA Method 1630 mod.		0.011	U .	0.011	0.034	ng/g dry	B080204	0800156
C-III	0806042-07 Soil/Sediment								
Hg	EPA Method 1631, Appendix		7.14		0.07	0.22	ng/g dry	B080201	0800142
C-IIIDI	M 0806042-08 Soil/Sediment								
MMHg	EPA Method 1630 mod.		0.012	В	0.010	0.031	ng/g dry	B080204	0800156
C-I	0806042-10 Soil/Sediment		•						
Hg	EPA Method 1631, Appendix		8.92		0.07	0.23	ng/g dry	B080201	0800142
C-IM	0806042-11 Soil/Sediment								•
MMHg	EPA Method 1630 mod.		0.032		0.009	0.030	ng/g dry	B080204	0800156
C-III	0806042-14 Soil/Sediment								
Hg	EPA Method 1631, Appendix	•	6.33		0.07	0.24	ng/g dry	B080201	0800142

Amy Dundle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

SAMPLE RESULTS

Total Mercury and Mercury Speciation by CVAFS

Analyte		Method	Total or Dissolved	Result	Qualifier	MDL	MRL	Units	Batch	Sequence
C-IIIM	0806042-15	Soil/Sediment	· · · · · · · · · · · · · · · · ·							
MMHg	EPA N	Method 1630 mod.		0.011	В	0.011	0.034	ng/g dry	B080204	0800156

Amy Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

SAMPLE RESULTS

Trace Metals by ICP-MS

Analyte Method Dissolved Result Qualifier MDL MRL Units Batch Sequence K-IIb 0806042-01 Soil/Sediment Soil/Se				_Total or						D ()	•
K-IIb 0806042-01 Soil/Sediment Ag 107 EPA Method 1638 mod. 0.15 0.04 0.12 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 1.1 B 0.5 1.4 mg/kg dry B080289 0800161 Cu 63 EPA Method 1638 mod. 51.2 0.21 1.23 mg/kg dry B080289 0800174 K-IIIb 0806042-02 Soil/Sediment 0.21 1.23 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161	nalyte		Method	Dissolved	Result	Qualifier	MDL	MRL	Units	Batch	Sequence
Ag 107 EPA Method 1638 mod, 0.15 0.04 0.12 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod, 1.1 B 0.5 1.4 mg/kg dry B080289 0800174 Cu 63 EPA Method 1638 mod, 51.2 0.21 1.23 mg/kg dry B080289 0800174 K-IIIb 0806042-02 Soil/Sediment 0.12 ng/kg dry B080289 0800174 Ag 107 EPA Method 1638 mod, 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod, 0.7 B 0.5 1.4 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod, 0.7 B 0.5 1.4 mg/kg dry B080209 0800161	K-IIb 0	0806042-01	Soil/Sediment							,	2
As 75 EPA Method 1638 mod. 1.1 B 0.5 1.4 mg/kg dry B080209 0800161 Cu 63 EPA Method 1638 mod. 51.2 0.21 1.23 mg/kg dry B080289 0800174 K-IIIb 0806042-02 Soil/Sediment 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161 Output Department Department Department Department Department Department As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161 Output Department Department Department Department Department Department	g 107	EPA	Method 1638 mod.		0.15		0.04	0.12	mg/kg dry	B080289	0800174
Cu 63 EPA Method 1638 mod. 51.2 0.21 1.23 mg/kg dry B080289 0800174 K-IIIb 0806042-02 Soil/Sediment 0.19 0.04 0.13 mg/kg dry B080289 0800174 Ag 107 EPA Method 1638 mod. 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161 Output D001 1.27 mg/kg dry B080209 0800174	s 75	EPA	Method 1638 mod.		1.1	Β.	0.5	1.4	mg/kg dry	B080209	0800161
K-IIIb 0806042-02 Soil/Sediment Ag 107 EPA Method 1638 mod. 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161	u 63	EPA	Method 1638 mod.		51.2		0.21	1.23	mg/kg dry	B080289	0800174
Ag 107 EPA Method 1638 mod. 0.19 0.04 0.13 mg/kg dry B080289 0800174 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161 As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161	K-IIIb	0806042-02	Soil/Sediment								•
As 75 EPA Method 1638 mod. 0.7 B 0.5 1.4 mg/kg dry B080209 0800161	107	EPA	Method 1638 mod.		0.19		0.04	0.13	mg/kg dry	B080289	0800174
	s 75	EPA	Method 1638 mod.		0.7	в	0.5	1.4	mg/kg dry	B080209	0800161
Cu 63 EPA Method 1638 mod. 34.2 0.22 1.27 mg/kg dry B060269 0600174	u 63	EPA	Method 1638 mod.		34.2		0.22	1.27	mg/kg dry	B080289	0800174
C-III 0806042-07 Soil/Sediment	C-III 0	0806042-07 [.]	Soil/Sediment	•							
Ag 107 EPA Method 1638 mod. 0.11 B 0.04 0.12 mg/kg dry B080289 0800174	107	EPA	Method 1638 mod.		0.11	В	0.04	0.12	mg/kg dry	B080289	0800174
As 75 EPA Method 1638 mod. 2.4 0.4 1.3 mg/kg dry B080209 0800161	s 75	EPA	Method 1638 mod.		2.4		0.4	1.3	mg/kg dry	B080209	0800161
Cu 63 EPA Method 1638 mod. 30.0 0.20 1.20 mg/kg dry B080289 0800174	u 63	EPA	Method 1638 mod.		30.0		0.20	1.20	mg/kg dry	B080289	0800174
C-I 0806042-10 Soil/Sediment	C-I 08	806042-10	Soil/Sediment								
Ag 107 EPA Method 1638 mod. 0.12 0.03 0.11 mg/kg dry B080289 0800174	g 107	EPA	Method 1638 mod.		0.12		0.03	0.11	mg/kg dry	B080289	0800174
As 75 EPA Method 1638 mod. 1.6 0.4 1.3 mg/kg dry B080209 0800161	s 75	EPA	Method 1638 mod.		1.6		0.4	1.3	mg/kg dry	B080209	0800161
Cu 63 EPA Method 1638 mod. 27.0 0.19 1.12 mg/kg dry B080289 0800174	u 63	EPA	Method 1638 mod.		27.0		0.19	1.12	mg/kg dry	B080289	0800174
C-III 0806042-14 Soil/Sediment	C-III 0	0806042-14	Soil/Sediment								
Ag 107 EPA Method 1638 mod. 0.09 B 0.04 0.12 mg/kg dry B080289 0800174	g 107	EPA	Method 1638 mod.		0.09	В	0.04	0.12	mg/kg dry	B080289	0800174
As 75 EPA Method 1638 mod. 2.5 0.4 1.3 mg/kg dry B080209 0800161	- s 75	EPA	Method 1638 mod.	•	2.5		0.4	1.3	mg/kg dry	B080209	0800161
Cu 63 EPA Method 1638 mod. 25.6 0.20 1.19 mg/kg dry B080289 0800174	u 63	EPA	Method 1638 mod.		25.6		0.20	1.19	mg/kg dry	B080289	0800174

my Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

SAMPLE RESULTS Physical Properties

								•	
Analyte	Method	Total or Dissolved	Result	Qualifier	MDL	MRL	Units	Batch	Sequence
K-IIb 0806042-	01 Soil/Sediment								
%TS	EPA Method 160.3		75.30		0.10	0.32	%	B080202	N/A
K-IIIb 0806042-	-02 Soil/Sediment								7
%TS	EPA Method 160.3		75.54		0.10	0.32	%	B080202	N/A
K-IIbM 0806042	2-04 Soil/Sediment								
%TS	EPA Method 160.3		76.11		0.05	0.16	. %	B080190	N/A
K-IIIbM 080604	2-05 Soil/Sediment								
%TS	EPA Method 160.3		78.63		0.05	0.16	%	B080190	N/A
C-III 0806042-0	7 Soil/Sediment								
%TS	EPA Method 160.3		81.65		0.10	0.32	%	B080202	N/A
C-IIIDM 080604	42-08 Soil/Sediment								
%TS	EPA Method 160.3		83.03		0.05	0.16	%	B080190	N/A
C-I 0806042-10) Soil/Sediment]					
%TS	EPA Method 160.3		87.12		0.10	0.32	%	B080202	N/A
C-IM 0806042-	11 Soil/Sediment						•		
%TS	EPA Method 160.3		86.43		0.05	0.16	%	B080190	N/A
C-III 0806042-1	4 Soil/Sediment]					
%TS	EPA Method 160.3		83.36		0.10	0.32	`%	B080202	N/A

Amy Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

SAMPLE RESULTS

Physical Properties

Analyte		Method	Total or Dissolved	Result	Qualifier	MDL	MRL	Units	· Batch	Sequence
C-IIIM	0806042-15	Soil/Sediment			[
%TS	EP/	A Method 160.3		80.74		0.05	0.16	%	B080190	N/A

Dundle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Accuracy and Precision

E	Batch		Metho	d		SOP	•	Matrix	
E	3080190	· ·	EPA Method	d 160.3		BR-15	01	Soil/Sedime	nt
	Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits
Duplic	ate (0806042	2-04)		B0801	90-DUP1				
%TS	,	76.10	%	76.11				0.01	15
E	3080201	EP	A Method 163	1, Appendix		BR-00	02	Soil/Sedime	nt
	Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits
Labora	atory Fortified	Blank(0803063)		B0802	201-BS1				
Hg		0.09	ng/g dry		0.1000	90	70-130		
Duplic	ate (0806039	9-06)		B0802	201-DUP1				
Hg	· · · · ·	71.84	ng/g dry	67.20				7	30
Matrix	Spike (0806)	039-06)		B0802	201-MS1				
Hg	t t	424.7	ng/g dry	67.20	337.7	106	70-130		
Matrix	Spike Duplic	ate (0806039-06)		B0802	201-MSD1				
Hg		415.4	ng/g dry	67.20	343.3	101	70-130	2	30
Certifie	ed_Reference	Material (072002	23, MESS-3)	B0802	201-SRM1	•			
Hg		93.63	ng/g dry		91.00	103	0-200		

Amy Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Accuracy and Precision

Batch		Metho	od		SOF	•	Matrix		
B080202		EPA Metho	d 160.3		BR-15	01	Soil/Sedime	nt	
Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits	
Dunlicate (080604	2-01)		B080 ⁴						
%TS	75.46	%	75.30	202-001-1			0.2	15	
B080204		EPA Method 1	630 mod.		BR-00	11	Soil/Sedime	nt	
Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits	
Laboratory Fortifie	d Blank(0805077)		B0802	204-BS1					
MMHg	0.021	ng/g dry		0.02500	84	65-135			
Duplicate (080604	2-05)		B0802	204-DUP1					
MMHg	0.011U	ng/g dry	0.011 U		·			35	
Matrix Spike (0806			B0802	204-MS1					
MMHg	0.107	ng/g dry	0.011 U	0.1010	106	65-135			
Matrix Spike Dupli	cate (0806042-05)		B0802	204-MSD1					
MMHg	0.103	ng/g dry	0.011 U	0.1000	103	65-135	4	35	
Certified Reference	e Material (072000	07, CC-580)	B0802	204-SRM1					
MMHg	62.03	ng/g dry		75.00	83	65-135			

m Dundle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Accuracy and Precision

Batch		Method			SOP		Matrix	
B080204		EPA Method 16	30 mod.		BR-00	11	Soil/Sedime	nt
Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits
Certified Reference	Material (07200	07, CC-580)	B0802	204-SRM2			•	
MMHg	65.51	ng/g dry		75.00	87	65-135		
				· .				
B080209		EPA Method 16	38 mod.		BR-00	67	Soil/Sedime	nt
Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits
Laboratory Fortified F	Blank(0808067)		B0802	209-BS1				
As 75	1.8	mg/kg dry		2.000	90	75-125		
Duplicate (0806042-0)1)		B0802	09-DUP1				
As 75	0.7	mg/kg dry	1.1				44	30
Matrix Spike (080604	2-01)		B0802	209-MS1		· .		
As 75	83.0	mg/kg dry	1.1	98.90	83	70-130		
Cu 63	130.3	mg/kg dry	39.50	98.92	92	70-130		
Matrix Spike Duplicat	te (0806042-01)	B0802	09-MSD1				
As 75	88.7	mg/kg dry	1.1	96.90	90	70-130	7	30
Certified Reference	Material (07511)	20, NIST 2709)	B0802	209-SRM1				
As 75	16.6	mg/kg dry		17.70	94	0-200		

from Dundle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Accuracy and Precision

Batch		Method			SOP Matrix		Matrix		
B080209		EPA Method 16	38 mod.	-	BR-006	67	Soil/Sedime	ment	
Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits	
Cortified Deference	Actorial (05170	04 NICT 2740)	DOGO						
As 75	550.0	mg/kg dry	B0802	626.0	88	75-125		· · ·	
Cartified Deference	Actorial (07500	07 MESS 2)	Booor						
As 75	18.2	mg/kg dry	BU0U2	21.20	86	75-125			
	EPA Method 1638 mod.								
B080289		EPA Method 16	<u>38 mod.</u>		BR-006	67	Soil/Sedime	nt	
B080289 Analyte	Result	EPA Method 16 Units	38 mod. Sample Value	Spike Value	BR-006 % Recovery	% Recovery Limits	Soil/Sedimer	nt RPD Limits	
Analyte	Result	EPA Method 16 Units	38 mod. Sample Value	Spike Value	BR-006 % Recovery	% Recovery Limits	Soil/Sedimer Duplicate RPD	nt RPD Limits	
B080289 Analyte Laboratory Fortified B Ag 107	Result Blank(0809108) 0.43	EPA Method 16 Units	38 mod. Sample Value B0802	Spike Value 289-BS2 0.5000	BR-006 % Recovery 86	57 % Recovery Limits 75-125	Soil/Sedimer Duplicate RPD	nt RPD Limits	
Analyte Analyte Laboratory Fortified B Ag 107 Duplicate (0806042-0	Result Blank(0809108) 0.43	EPA Method 16 Units	38 mod. Sample Value B0802	Spike Value 289-BS2 0.5000	BR-006 % Recovery 86	% Recovery Limits 75-125	Soil/Sedime Duplicate RPD	nt RPD Limits	
B080289 Analyte Laboratory Fortified B Ag 107 Duplicate (0806042-0 Ag 107	Result Blank(0809108) 0.43 01) 0.16	EPA Method 16 Units	38 mod. Sample Value B0802 B0802 0.15	Spike Value 289-BS2 0.5000 289-DUP1	8R-006	57 % Recovery Limits 75-125	Soil/Sedimer Duplicate RPD 6	nt RPD Limits	
B080289 Analyte Laboratory Fortified B Ag 107 Duplicate (0806042-0 Ag 107 Cu 63	Result Blank(0809108) 0.43 01) 0.16 57.28	EPA Method 16 Units) mg/kg dry mg/kg dry mg/kg dry	38 mod. Sample Value B0802 0.15 51.20	Spike Value 289-BS2 0.5000 289-DUP1	BR-006	57 % Recovery Limits 75-125	Soil/Sedimer Duplicate RPD 6 11	nt RPD Limits 30 30	
Analyte Analyte Laboratory Fortified B Ag 107 Duplicate (0806042-0 Ag 107 Cu 63 Matrix Spike (080604	Result Blank(0809108) 0.43 0.10 0.16 57.28 2-01)	EPA Method 16	38 mod. Sample Value B0802 0.15 51.20 B0802	Spike Value 289-BS2 0.5000 289-DUP1	BR-006	57 % Recovery Limits 75-125	Soil/Sedimer Duplicate RPD 6 11	RPD Limits 30 30	
B080289AnalyteLaboratory Fortified BAg 107Duplicate (0806042-0Ag 107Cu 63Matrix Spike (080604Ag 107	Result Blank(0809108) 0.43 01) 0.16 57.28 2-01) 24.85	EPA Method 16 Units mg/kg dry mg/kg dry mg/kg dry	38 mod. Sample Value B0802 0.15 51.20 B0802 0.15	Spike Value 289-BS2 0.5000 289-DUP1 289-MS1 25.89	BR-006	57 % Recovery Limits 75-125 75-125	Soil/Sedimer Duplicate RPD 6 11	nt RPD Limits 30 30	

Amy Dundle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Accuracy and Precision

Batch	•	Method SOP EPA Method 1638 mod. BR-0067 Soi)	Matrix			
B080289	•			Soil/Sedime	nt			
Analyte	Result	Units	Sample Value	Spike Value	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits
Matrix Spike Duplic	ate (0806042-01)	B0802	289-MSD1		1		
Ag 107	24.48	mg/kg dry	0.15	24.28	100	70-130	2	30
Cu 63	109.7	mg/kg dry	51.20	60.70	96	70-130	1	30
NIST 2709			. B0802	289-SRM1				
Ag 107	0.38	mg/kg dry		0.4100	93	75-125		
Cu 63	35.35	mg/kg dry		34.60	102	75-125		
PACS-2			B0802	289-SRM2				
Ag 107	1.12	mg/kg dry		1.220	92	75-125		
Cu 63	306.4	mg/kg dry	. · ·	310.0	99	75-125		

my Dudle

Amy Durdle For Amanda Fawley Project Manager

ŗ

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY

Method Blanks/Detection Limits

Batch #	Method #			SOP #		I	Natrix		
B080190	EPA Method 16	0.3		BR-1501		Matrix Soil/Sediment StDev MDL MRI Limits % MIL 0.03 0.05 0.16 Matrix Matrix Matrix Soil/Sediment StDev MDL MRI StDev MDL MRI Matrix MDL MRI StDev MDL MRI Limits ng/g MIL			
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL %	MRL	
Method Blanks									
%TS B080190-BLK1 B080190-BLK2 Method Blank Summary	0.00 0.00	%			0.10	0.03	0.05	0.16	
Batch #	Method #			SOP #		ſ	Matrix		
B080201	EPA Method 1631, A	ppendix		BR-0002		Soil/	Soil/Sediment		
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL ng/	MRL	
Method Blanks	·								
Hg B080201-BLK1 B080201-BLK2 B080201-BLK3 B080201-BLK4 Method Blank Summary	0.04 0.07 0.06 0.04	ng/g ng/g ng/g ng/g	0.05	0.02	0.06	0.02	0.03	0.10	
Batch #	Method #		0.00	SOP #	0.00		Matrix	0.10	
B080202	EPA Method 16	0.3	<i>1</i> .	BR-1501	į	Soil/	Sediment		
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL %	MRL	

Amy Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Method Blanks/Detection Limits

Batch #	Method #			SOP #			Matrix		
B080202	EPA Method 10	60.3		BR-1501		Soil/	Matrix Soil/Sediment StDev MDL MI Limits % MI 0.07 0.10 0.3 Matrix Matrix Matrix StDev MDL MI Limits ng/g MI		
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL %	MRL	
Method Blanks	·								
%TS B080202-BLK1 B080202-BLK2 Method Blank Summary	-0.06 -0.03	% %			0.20	0.07	0.10	0.32	
Batch #	Method #			SOP #		r	Matrix		
B080204	EPA Method 1630	mod.		BR-0011		Soil/	Soil/Sediment		
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL ng	MRL /g	
Method Blanks								· · · · · · · · · · · · · · · · · · ·	
MMHg B080204-BLK1 B080204-BLK2 B080204-BLK3 B080204-BLK4	0.005 0.006 0.003 0.003	ng/g ng/g ng/g ng/g							
Method Blank Summary	·		0.004	0.002	0.016	0.005	0.008	0.025	
Batch #	Method #			SOP #		. 1	Matrix		
B080289	EPA Method 1638	mod.		BR-0067		Soil/	Sediment		
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL mg/kg	MRL g dry	

Anny Dudle

Amy Durdle For Amanda Fawley Project Manager

BRL Project ID: 0806042 BRL Project Reference: NSR-MS0801 BRL Project Manager: Amanda Fawley Report Date: March 11, 2008

QUALITY ASSURANCE SUMMARY Method Blanks/Detection Limits

Batch #	Method	#		SOP #		1	Matrix	
B080289	EPA Method 16	638 mod.		BR-0067		Soil	Sediment	
Analyte	Result	Units	Average	Standard Deviation	Average Limits	StDev Limits	MDL mg/k	MRL g dry
Method Blanks	•							
Ag 107 B080289-BLK1 B080289-BLK2 B080289-BLK3 Method Blank Summary	-0.00100 -0.00500 0.03	mg/kg dry mg/kg dry mg/kg dry	0.01	0.02	0.10	0.03	0.03	0.10
Cu 63 B080289-BLK1 B080289-BLK2 B080289-BLK3 Method Blank Summary	-0.13 -0.12 -0.13	mg/kg dry mg/kg dry mg/kg dry	-0.13	0.01	1.00	0.17	0.17	1.00

Amy Dudle

Amy Durdle For Amanda Fawley Project Manager

		WORK ORDER	
Customer:	North State Resources	Due Date:	03/06/08
Contact:	Jim Fitzgerald	Receipt date:	02/07/08 08:45
Project ID:	NSR-MS0801	Log-in date:	02/08/08 15:07
QA Level:	Standard	Sample Custodian:	Jason Barrett
EDD:	None	BRL Project Manager:	Amanda Fawley
Turn-around	time: 20	Courier:	FedEx
Shipping Cor	ntainer #1	Airbill #: 9442 Shipping Container: Defa Shipping Container Temp.: 3.0 °(24315019 ult Cooler 3

Shipping Container Coolant: Ice

Custody Seals: Present

Work order notes:

BRL Sample ID Client ID / Sit		D		Collection Date/Time	Matrix	Analyte
0806042-01	K-IIb		1	2/12/07 10:50	Soil/Sediment	
				8.		
	Container	<u>Size</u>	Preservation	<u>pH</u>	nn an de namme de la de la construction de la	
)806042-01A	Jar HDPE	8oz	None		Method: EPA Method 1631, Append	ix Hg
	Jar HDPE	8oz	None		Method: EPA Method 1638 mod.	Cu
	Jar HDPE	8oz -	None		Method: EPA Method 1638 mod.	As
	Jar HDPE	8oz	None		Method: EPA Method 1638 mod.	Ag
	Jar HDPE	8oz	None		Method: EPA Method 160.3	%TS
Comments:			·			
0806042-02	K-IIIb		1	2/12/07 11:15	Soil/Sediment	
0806042-02	K-IIIb Container	Size	1 Preservation	2/12/07 11:15 pH	Soil/Sediment	
0806042-02 806042-02A	K-IIIb <u>Container</u> Jar HDPE	<u>Size</u> 8oz	1 <u>Preservation</u> None	2/12/07 11 15 <u>pH</u>	Soil/Sediment Method: EPA Method 1631, Appendi	x Hg
0806042-02 806042-02A	K-IIIb <u>Container</u> Jar HDPE Jar HDPE	<u>Size</u> 8oz 8oz	1 <u>Preservation</u> None None	2/12/07 11:15 <u>рН</u>	Soil/Sediment Method: EPA Method 1631, Appendi Method: EPA Method 1638 mod.	x Hg Cu
0806042-02 806042-02A	K-IIIb <u>Container</u> Jar HDPE Jar HDPE Jar HDPE	Size 8oz 8oz 8oz 8oz	1 Preservation None None None	2/12/07 11:15 <u>pH</u>	Soil/Sediment Method: EPA Method 1631, Appendi Method: EPA Method 1638 mod. Method: EPA Method 1638 mod.	x Hg Cu As
0806042-02 1806042-02A	K-IIIb <u>Container</u> Jar HDPE Jar HDPE Jar HDPE Jar HDPE	Size 8oz 8oz 8oz 8oz 8oz	1 Preservation None None None None	2/12/07 11:15 <u>pH</u>	Soil/Sediment Method: EPA Method 1631, Appendi Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 1638 mod.	x Hg Cu As Ag
0806042-02 0806042-02A	K-IIIb Container Jar HDPE Jar HDPE Jar HDPE Jar HDPE Jar HDPE	<u>Size</u> 8oz 8oz 8oz 8oz 8oz 8oz	1 Preservation None None None None None	2/12/07 11:15 <u>pH</u>	Soil/Sediment Method: EPA Method 1631, Appendi Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 160.3	x Hg Cu As Ag %TS

			<u>WOR</u>	RK ORDER			National Annual States				
			v.								
Customer:	North State Re	sources		Due Dat	e:	.03/06/08					
Contact:	Jim Fitzgerald			Receipt	date:	02/07/08 (08:45				
Project ID:	NSR-MS0801			Log-in d	ate:	02/08/08 ⁻	15:07				
BRL Sample ID	Client ID / Site	ID		Collection Date/Time	Matrix		Analyte				
0806042-03	K-IID			12/12/07 12:00	Soil/Sedin	nent	in the second				
0806042-03A Comments:	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE Jar HDPE	<u>Size</u> 8oz 8oz 8oz 8oz 8oz	Preservation None None None None	<u>рН</u>	Method: E Method: E Method: E Method: E	PA Method 1638 mod. PA Method 1638 mod. PA Method 1638 mod. PA Method 160.3	Cu As Ag %TS				
0806042-04	K-IIbM			12/12/07 10:50	Soil/Sedin	ediment					
0806042-04A Comments:	<u>Container</u> Jar Glass Jar Glass	<u>Size</u> 8oz 8oz	<u>Preservation</u> None None	<u>Н</u> а	Method: E Method: E	PA Method 1630 mod. PA Method 160.3	MMHg %TS				
0806042-05	K-IIIbM			12/12/07 11:15	Soil/Sedin	nent					
0806042-05A Comments:	<u>Container</u> Jar Glass Jar Glass	<u>Size</u> 8oz 8oz	Preservation None None	<u>pH</u>	Method: El Method: El	PA Method 1630 mod. PA Method 160.3	MMHg %TS				
0806042-06	K-IIDM			12/12/07 12:00	Soil/Sedin	nent					
0806042-06A Comments:	<u>Container</u> Jar Glass Jar Glass	<u>Size</u> 8oz 8oz	Preservation None None	<u>рН</u>	Method: El Method: El	EPA Method 1630 mod. MMHg EPA Method 160.3 %TS					

Phone: 206-632-6206 Fax: 206-632-6017 Email: brl@brooksrand.com

			0	806042								
Customer:	North State Re	sources		Due Da	te:	03/06/08						
Contact	lim Fitzgerald			Receint	date:	02/07/08/)8·45					
				Kecelpa		02/07/00 0						
Project ID:	NSR-MS0801			Log-in (date:	02/08/08	15:07					
BRL Sample I	D Client ID / Site	e ID		Collection Date/Time	Matrix		Analyte					
0806042-07	C-III			12/13/07 10:40	Soil/Sediment							
				anna a' Geologe Alberton R								
	<u>Container</u>	<u>Size</u>	Preservation	<u>pH</u>								
806042-07A	Jar HDPE	8oz	None		Method: EPA M	lethod 1631, Appendix	Hg					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Cu					
	Jar HDPE	. 8oz	None		Method: EPA M	lethod 1638 mod.	As					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Ag					
	Jar HDPE	8oz	None		Method: EPA M	lethod 160.3	%TS					
comments:	<u>}</u>				· ·							
0806042-08	C-IIIDM			12/13/07 10:40	Soil/Sediment							
	Container	<u>Size</u>	Preservation	<u>pH</u>								
806042-08A	Jar Glass	80Z .	None		Method: EPA M	lethod 1630 mod.	MMHg					
_	Jar Glass	8oz	None		Method: EPA M	lethod 160.3	%TS					
comments:		•										
0806042-09	FB-1			12/13/07	Soil/Sediment							
			-14 -									
	Container	<u>Size</u>	Preservation	<u>pH</u>			,					
806042-09A	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Mo *					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Ag					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	As					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Ва					
	Jar HDPE	80Z	None		Method: EPA M	lethod 1638 mod.	Be					
•	Jar HDPE	- 8oz	None		Method: EPA M	lethod 1638 mod.	Cd					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Co					
	Jar HDPE	8oz	None		Method: EPA M	ethod 160.3	%TS					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Cu					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Zn					
	Jar HDPE	8oz	None	•	Method: EPA M	lethod 1638 mod.	Ni					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Pb					
	Jar HDPE	8oz	None		Method: EPA M	ethod 1638 mod.	Sb					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	Se					
	Jar HDPE	8oz	None		Method: EPA M	lethod 1638 mod.	TI					
	lar HDPF	807	None		Method: EPA M	lethod 1638 mod	V					
		002	None				v					

Comments: FB: Do not spike

			08	06042					
Customer: Contact: Project ID:	North State Re Jim Fitzgerald NSR-MS0801	sources		Due C Recei Log-ii)ate: pt date: n date:	03/06/08 02/07/08 08 02/08/08 15	3:45 3:07		
BRL Sample ID) Client ID / Site	∍ID		Collection	Matrix		Analyte		
0806042-10	C-I		1 1	2/13/07 10:0	0 Soil/Sec	diment			
0806042-10A	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE Jar HDPE Jar HDPE	Size 8oz 8oz 8oz 8oz 8oz 8oz	Preservation None None None None None	<u>pH</u>	Method: Method: Method: Method: Method:	EPA Method 1631, Appendix EPA Method 1638 mod. EPA Method 1638 mod. EPA Method 1638 mod. EPA Method 160.3	Hg Cu As Ag %TS		
0806042-11	C-IM		1 	2/13/07 10:0	0 Soil/Sec	liment			
0806042-11A Comments:	<u>Container</u> Jar Glass Jar Glass	<u>Size</u> 8oz 8oz	izePreservationpHlozNoneMethod:EPA Method 1630 mod.lozNoneMethod:EPA Method 160.3						

				RK ORDER			•				
				1000042							
Customer:	North State R	esources		Due Date	۰.	03/06/08					
Contact:	lim Fitzgerald	1		Baceint	dato:	02/07/08 08					
		I		Iveceibr	uale.	02/07/08 08	.45				
Project ID:	NSR-MS0801			Log-in a	ate:	02/08/08 15:07					
BRL Sample I	D Client ID / Si	te ID		Collection Date/Time	Matrix	an 1997 - Albert ar an anns 1999 Anns an Anns an	Analyte				
0806042-12	C-II			12/13/07 10:20	Soil/Se	diment					
	Container	Size	Preservation	рН							
0806042-12A	Jar HDPE	80Z	None	<u>Pir</u>	Method:	EPA Method 1631, Appendix	Hg				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ag				
	Jar HDPE	.8oz	None		Method:	EPA Method 1638 mod.	As				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ва				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Be				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cd				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Co				
	Jar HDPE	8oz	None		Method:	EPA Method 160.3	%TS				
	Jar HDPE	8oz -	None		Method:	EPA Method 1638 mod.	Cu				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Zn				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Мо				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ni				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Pb				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Sb				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Se				
	Jar HDPE	8oz i	None		Method:	EPA Method 1638 mod.	TI				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	V				
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cr				
Comments:							-				
0806042-13	C-IIM	and and an a		12/13/07 10:20	Soil/Se	diment					
		and and a second and a second seco									
annorman kasili sisili kasili kas	<u>Container</u>	<u>Size</u>	Preservation	<u>Н</u> а	-	annenen euskenna mannanna minna an anna an anna an anna anna	ererum diet die Land III. In die				
0806042-13A	Jar Glass	8oz	None		Method:	EPA Method 1630 mod.	MMHg				
	Jar Glass	8oz	None		Method:	EPA Method 160.3	%TS				
Comments:											

			WOI 0	RK ORDER 806042			and the second				
Customer: Contact: Project ID:	North State Res Jim Fitzgerald NSR-MS0801	ources	<u>a na se o na sense a conse</u>	03/06/08 02/07/08 08:45 02/08/08 15:07							
BRL Sample ID	Client ID / Site	D		Collection Date/Time	Matrix		Analyte				
0806042-14	C-III			12/13/07 10:35	Soil/Sec	liment	a and a second and				
0806042-14A Comments:	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE Jar HDPE Jar HDPE	Size 8oz 8oz 8oz 8oz 8oz 8oz	Preservation None None None None None	<u>рН</u>	Method: Method: Method: Method: Method:	EPA Method 1631, Appendix EPA Method 1638 mod. EPA Method 1638 mod. EPA Method 1638 mod. EPA Method 160.3	Hg Cu As Ag %TS				
0806042-15	C-IIIM			12/13/07 10:35	Soil/Sec	liment					
0806042-15A Comments:	<u>Size</u> 8oz 8oz	<u>Preservation</u> None None	 <u>pH</u> . 	Method: Method:	EPA Method 1630 mod. EPA Method 160.3	MMHg %TS					

			Vo	00042			
Customer:	North State Re	esources		Due Dat	te:	03/06/08	
Contact:	Jim Fitzgerald			Receipt	date:	02/07/08 08	:45
Project ID:	NSR-MS0801			Log-in d	date:	02/08/08 15	:07
				Collection			
BRL Sample II	D Client ID / Sit	e ID		Date/Time	Matrix		Analyte
0806042-16	C-IV		1 	2/13/07 10:50	Soil/Se	diment	(18) 1997 1997 - 1997 1997 - 1997
	<u>Container</u>	<u>Size</u>	Preservation	<u>рН</u>			
806042-16A	Jar HDPE	8oz	None		Method:	EPA Method 1631, Appendix	Hg
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ag
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	As
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ba
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Be
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cd
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Co
	Jar HDPE	8oz	None		Method:	EPA Method 160.3	%TS
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cu
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Zn
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Mo
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ni
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Pb
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Sb
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Se
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	TI
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	V
comments:	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cr
0806042-17	C-IVM		1	2/13/07 10:50	Soil/See	diment	
	Container	<u>Size</u>	Preservation	<u>Hq</u>			
806042-17A	Jar Glass	8oz	None		Method:	EPA Method 1630 mod.	MMHg
	Jar Glass	8oz	None		Method:	EPA Method 160.3	%TS

Phone: 206-632-6206 Fax: 206-632-6017 Email: brl@brooksrand.com

Customer: Contact: Project ID:	North State Re Jim Fitzgerald NSR-MS0801	esources		Due Dat Receipt Log-in d	e: date: late:	02/07/08 08:45 02/08/08 15:07							
BRL Sample ID	Client ID / Site	e ID		Collection Date/Time	Matrix		Analyte						
0806042-18	C-V			12/13/07 11:10	Soil/Sec	Jiment							
	Container	Size	Preservation	pH									
806042-18A	Jar HDPE	8oz	None		Method:	EPA Method 1631, Appendix	Hg						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ag						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	As						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Ba						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Be						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cd						
	Jar HDPE	8oz	None	•	Method:	EPA Method 1638 mod.	Co						
	Jar HDPE	8oz	None		Method:	EPA Method 160.3	%TS						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Cu						
	Jar HDPE	8oz	None		Method:	EPA Method 1638 mod.	Zn						
	Jar HDPE	80Z	None		Method:	EPA Method 1638 mod.	Mo						
		80Z	None		Method:	EPA Method 1638 mod.	NI Dh						
		80Z	None		Method:	EPA Method 1638 mod	PD Sh						
		807	None		Method:	EPA Method 1638 mod	Se						
	Jar HDPE	807	None		Method:	EPA Method 1638 mod	TI						
	Jar HDPE	807	None		Method:	EPA Method 1638 mod	v						
	Jar HDPF	807	None	· ·	Method.	EPA Method 1638 mod	v Cr						
omments:		002	NONC		metrou.		0.						

	Container	Size	Preservation	<u>Hq</u>			
0806042-19A	Jar Glass	8oz	None		Method:	EPA Method 1630 mod.	MMHg
	Jar Glass	8oz	None		Method:	EPA Method 160.3	%TS
Comments:	Sample decanted						

<u>- upd</u>aleol dian Re

2-09 Date Date

Page 8 of 8

			_											ß	ц h		Ц Л	:	H						
	of 3	I COPY STOMER COPY			e NW	8107	2-6206	2-6017	@brooksrand.com	nd.com	Comments			222	C C C C C C C C C C C C C C C C C C C		Ś						Time:	1 Time: 845	
		v: CU			venu	(A 9	6-63	6-63	ples	ksrai			Other (specify)))		\langle		く					3/05	
	Pag	Nhite Yellov	1		9	le, ∕	e: 20	20	l:san	broo			Other (specify)	\square	$\left \right\rangle$		2		\leq					2/1	
					2958 2958	Seatt	noh	⁻ax:	Emai	www.	þ		Other (specify) CAMT	Κ	\leq	X)	X	\leq	X			Date:	Date:	
							-		ш	1	equire		Filtration	K	2)		ζ						
											ses re		sbilo2 %	$\left \right\rangle$))			1	び し	
								,		 ,	Analy		As / Se species (specify))	$\left(\right)$		\mathcal{E}		5					$\sum_{i=1}^{n}$	\gg
							٤	R N			0		(viiseqs) SM-qOI sleteM	\sum	\langle		5		\mathcal{D}					Ž. Ž	_
	cord				(e)		<u>لەر</u> ي	ert	h	_ \			Methyl Hg, EPA 1630	К	\langle		5		\leq					3RL b	.#
2	Re				ie o		V-V-C	El te		200			· ↑€31 Aq∃ ,gH istoT	К	$\left \right\rangle$		Z		ζ				ed by:	ed at I	ackinę
000	ody						SM @		2997	と) Afon	none	Other (specify)	К	5		\leq		5		_		eceive	eceive	<u>کار</u> ج
ဝိ ထို	ust		ť		mail		الما≈	Ŋ	92	LU)	Field	eserv	HCI/HNO ₃ /BrCI (circle one)	B)		\leq		$\mathbf{)}$		_		Ř	Ř	. <u>.</u>
J	ę				3X / E		250	lame	ct ID	ġ	á	2	Unpreserved / ice only	Ŗ	ک	×	Ž	×	× T	X			Q		
۰,	ain		ŀ	ceip	N F		たい	er's n	oroje(oject	sn		Sample field filtered (Y/N)	Þ	Ŧ	Z	Ž	Z	子	Z			: // С	äi	_
9 9	ч С			۳ - ۲	/es, t	×#	Gier	mple	entp	۲L pr	aneo		# of containers	Ð	2	, 	Ż	_	2				Time	Tim	lers:
			Ľ	5	Ê	Га		Sa	Ö	BF	iscell		Matrix type	2	2	S	2	S	5	S			ø		f coo
		÷.,					ት				Z		Sampler (initials)	R	5	H	B	h	X	ピレ			2/9/2		.o #
	GN	opucts					606		1	.*	tion	Π	əmiT	6	Sa Sa	050	Ł		13.5	33			Date:-	Date:	
		YSIS & PR		4	3	5	ار م		896		olleci		Date	FT.	102	1 1-0/21	SIL	10721	A-T	61/2			hz		8
	K	SANAL	Ĩ	ゴ	20	13	<u>ت</u>	•	いた		0		2	K	1 K	121	9	Ŕ	Ę	121				>	リビ
	RROC	TRACEMETAL		ILENTIN VIA	ontact: I'm fitze	ddress: 305 Cheyfi	WH. Shesta		10ne #: (530)21	0 #: Z 10001			Sample ID	NA ANNI		9 T-7	SANAN	「 K- 田 P		CTT-N		6	t ساتت by: المالين elinquished by:	elinquished by:	hipping carrier: 🛴,
			Ľ	<u> </u>	Ő	Ă		*	٩	م				Γ		(^m)	7	ພາ		[``]		Ē	ĸ	Ľ	<i>о</i> р

÷.,

2/

Ì,

									· · · · ·	F	j												. *	
										Å		Ц Ц	-	山	l	コン						×.	樹	
of 3 scopy stomer copy	٦C	le NW	8107	2-6206	2-6017	@brooksrand.com	nd.com	Comments			うぞうとことの	Sunte Sali Liaza	-	くくく			>				Time:	Time: 845	10 Mar 10 V	
e 2 B: LAE w: CU	and	Ven	VA 9	<u> </u>	6-63	nples	ksrai)ther (specify))		S						108		And a strategy of
Pag White Yello	ks R	6 ^m /	tle, V	ie: 2(20	l:san	.broc)(ther (specify))	\langle)		$\left(\right)$						2/4		100 (100 (100 (100) 100) 100 (100)
	Broo	3958	Seat	Phor	Fax:	Emai	MMM	bə	ther (specify) ∠AMT		2					\leq		×		X	Date	Date		
	to:							equin	iltration		2	$\left(\right)$		\leq		ζ		•	,			1		
	Ship							Ses n	sbilds`	6)	4		5		2	A.				-	1	/	
							Ì	Analy	ده / Se species (specify)		2			\langle		2				`	·	کم ا	1	
. T				X	velo				etals ICP-MS (specify)	V)(\int		\langle)		R			-	y: K	1	
core	N)	ue)		et c	とうし	ר	7		lethyl Hg, EPA 1630	٧Ż	2 A	乂	×	々	×	义	X	ί¢β	×			BRL	3 #: 0	
Re	K K	ie o		Srw	見	10	0 0		otal Hg, EPA 1631	<u> </u>	4	7		식		2					ed by:	ed at	ackin	
tody	ation	(cird		0	5	2660	×2	d ation)ther (specify)	2 K	1	1		く		2					eceive	eceiv	RL Tr	
Cust	lirm	mai		3	Ŋ	Å.	Ψ	Fiel	ICI/HNO ₃ /BrCl (circle one)		4	Ì	~))					Å	Ŕ		
Of (t cor	X/E	~	ere.	ame	ct ID	ä	à	Inpreserved / ice only	אן ו אך	2	Х П		Ž	×	Ž	×	×	×	X	0			
ain	sceip	oV F		ば	er's n	oroje	ojeci	sn	ample field filtered (Y/N)		2)	判	Z	月	2	ž	2	2	Z	Z	e: <i>N</i> C	.: 0	. 	
ဗ်	DC re	/es,	;; ;; ;;	nail	mple	ent p	čL pr	laneo	of containers	¥ -	2	Ż		Ì		Ì	-	ļ	-	-	Tim	л. Ц	lers:	
	ы С	€	ц	ĥ	Sa	C	Ш	liscel	atrix type	v V	2	ঠ	N	Ś	δ	Å	S	S	S	3	80		f coo	
								Σ	(sletini) 191qms		3	K	Ь	R	5	び	よう	Ц Г	R	<u>н</u> Б	2/6/1		;0 #	
P				64		3		ion	əmi	L	Ţ	ર્ષ	So	Q	115	N.S.	002	010	040	30)ate:-)ate:		
RA	Å	ष्ट	*	9leC	2	કેનહ		ollect				1 1-31	2001	5 S	2041	PLOR A	1 ton	1-tox	3WW	stof i				
ANALY	NS	tele	्रे	5		1-1-		ŭ	016			3	ίζή:	Ĩ	iz/	گ ک	larr	1/2/	W2U	NZ/F	these	2	ш×	
BROC	ent: Ewhnix Via	Intact: Jw Fitz	dress: 305 Chefn	WH. Shesk,		one #: (530) 22)#: てしんの)		Sample ID		、それしう	S S H S S	K-ILIN	V AVAVV	K-Thim	NAX-Y/	K-HDW	11-7	C-ITTINA	FB-1-2-1	linquished by:	linquished by:	ipping carrier: רבה	
	Ū	ပို	Ρq			Р	Ы			~	-	2	က	4	വ	9	2	ω	တ	9	Re	Re	ري ا	

.1 *

,

0806042

Page 3 of 3 White: LAB COPY Yellow: CUSTOMER COPY	o: Brooks Rand LLC	3958 6 th Avenue NW	Seattle, WA 98107	Phone: 206-632-6206	Fax: 206-632-6017	Email:samples@brooksrand.com	www.brooksrand.com	uired Comments	Filtration Other (specify) Other (specify) Other (specify)	X		×		×		X	>		Date: Time:	→ Date: 2/9/ a 8 Time: 8℃	
	Ship to							ses req	.spiloS %										-	rl/	
	Γ	l						Analy	As / Se species (specify)											١٢	
- D				410	evalo				Metals ICP-MS (specify)							_	_			by: 🕇	`
COL	Î	ne)	•	Aet.(1200	ר י			Methyl Hg, EPA 1630		\mathbf{X}		×		×	>	<	×		BRL	;¥ б
y Re	201	cle o		WS L	Ĩ	5	00		Total Hg, EPA 1631				_	_				+	/ed by	/ed at	rackir
stod	nation	il (cir		9	ゴビ	1972	X Z	eld vation					-			_		-	Receiv	Receiv	BRL T
Cus	nfirn	Ema		كعمال	ر) اف	9. 9	Ð	Fie Preser	Unpreserved / ice only	$\mathbf{\times}$	×	X	×	X	×	× :	</td <td><u>ل</u>×</td> <td>┢╴</td> <td></td> <td></td>	<u>ل</u> ×	┢╴		
, Č	ipt cc	Fax /		1	nan	ect II	ot D		Sample field tiltered (Y/N)	7	7	Z	エ	z	2:	2	z	2 2	001		
hair	rece	s, by l	# :		pler's	it proj	proje	eous	# of containers	É		_	_	-					ime: 🗸	ime:	.s: /
0	0000	If yes	Fax	Emai	Sam	Clien	BRL	cellan	Matrix type	5	Ś	S	S	S	S I	2	<u>n</u> ,	2		-	ooler
								Misc		L.	Ħ	4	μ	Щ	14	11	τŀ	ŕ <i>μ</i>	612		t of c
	4. -								Sampler (initials)	<u>n</u>	ר) ר	<u>ר</u>		<u>n</u>	5		$\frac{r}{r}$	<u>)り</u>	e P	e:	#
AN				4		3		ection		600	1000	0201	201 H	1032	103			011 H	Dat	Dat	
ALYSIS &	JSR	225	1	7 9/00		8 P.		Colle	∋ieŪ	1-061121	1810	EN/EI/ZI	12/1310-	12/13/15	Nara		1000	51/21/21	haari		х Ш
BROO	Client: Futrix via N	Contact: Um Fitol	Address: 305 Uneshigh	wh. Sheshe, CI	-	Phone #: (530) 227-	PO#: 26601		Sample ID	1 C~I	2 C-IM	3 じーエ	4 C-HM	5 C- 田	6 C- 田 W		0 C-IVM		Relinquished by:	Relinquished by:	Shipping carrier: Fed

0806042

-)

April 22, 2008

North State Resources Attn: Jim Fitzgerald 305 Chestnut St Mount Shasta CA 96067 fitzgerald@nsrnet.com

RE: BRL Project Reference: NSR-MS0802

BRL Work Order: 0813013

Mr. Fitzgerald,

This is a report regarding the analysis of five sediment samples for total and leachable copper (Cu). The samples were received, prepared, analyzed, and stored according to BRL standard operating procedures (SOP) and EPA methodology.

The results were blank-corrected as described in the calculations section of the relevant BRL SOP(s) and may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific method detection limits (MDL), method reporting limits (MRL), and other details.

The internal standard germanium (Ge) in sequence 0800309 showed a trend of lower recoveries throughout the analysis; however, all QC samples corrected using the internal standard were within the control limits. On this basis, no qualification of the data was required.

Sample *K-I* yielded a leachable Cu result greater than the result from the total fraction; however, a comparison of the results produced a relative percent difference (RPD) within the method criterion for duplicate precision. Therefore, the results were considered statistically equivalent.

BRL, a NELAC accredited laboratory (FL LAB ID E87982), certifies that the reported results meet all NELAC requirements. Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Amanda Fawley

Project Manager amanda@brooksrand.com

Project Coordinator bryan@brooksrand.com

Organization: North State Resources Contact: Jim Fitzgerald Report Date: April 22, 2008

BRL Work Order: 0813013 BRL Project Reference: NSR-MS0802 BRL Project Manager: Amanda Fawley

ANALYTICAL REPORT FOR SAMPLES

Sample ID	BRL ID	Sampled	Received	Matrix
K-IIb	0813013-01	12/12/07	03/25/08	Soil/Sediment
K-IIIb	0813013-02	12/12/07	03/25/08	Soil/Sediment
C-I	0813013-03	12/13/07	03/25/08	Soil/Sediment
K-I	0813013-04	12/12/07	03/25/08	Soil/Sediment
K-IV	0813013-05	12/12/07	03/25/08	Soil/Sediment
,				

BATCH SUMMARY FOR SAMPLES

Analyte/Method	Prepared	Analyzed	Batch	Sequence
Cu 65 by EPA Method 1638 mod.	04/17/2008	04/19/2008	B080533	0800309
Cu 65 by EPA Method 1638 mod. leachable	04/17/2008	04/19/2008	B080534	0800309
%TS by EPA Method 160.3	04/17/2008	04/18/2008	B080535	N/A

SAMPLE RESULTS

	Method	Analyte	Total or Dissolved	Result	Qualifier	MDL	MRL	Units	Batch	Sequence
0813013-01	Soil/Sediment K-IIb									
EPAN	Method 1638 mod. leachable	Cu 65		19.1		0.22	0.65	mg/kg dry	B080534	0800309
E	EPA Method 1638 mod.	Cu 65		58.3		0.23	1.33	mg/kg dry	B080533	0800309
0813013-02	Soil/Sediment K-IIIb									
EPA N	/lethod 1638 mod. leachable	Cu 65	/	7.24		0.21	0.63	mg/kg dry	B080534	0800309
E	EPA Method 1638 mod.	Cu 65		37.5		0.22	, 1.28	mg/kg dry	B080533	0800309
0813013-03	Soil/Sediment C-I								1	
EPA N	/lethod 1638 mod. leachable	Cu 65		6.11		0.19	0.56	mg/kg dry	B080534	0800309
· E	EPA Method 1638 mod.	Cu 65		29.0		0.18	1.09	mg/kg dry	B080533	0800309
0813013-04	Soil/Sediment K-I		,							
, EPA N	Method 1638 mod. leachable	Cu 65		1120		2.21	6.50	mg/kg dry	B080534	0800309
E	EPA Method 1638 mod.	Cu 65		819		2.23	13.1	mg/kg dry	B080533	0800309
0813013-05	Soil/Sediment K-IV									
EPA N	/lethod 1638 mod. leachable	Cu 65		8.10		0.21	0.63	mg/kg dry	B080534	0800309
E	EPA Method 1638 mod.	Cu 65		43.5		0.22	1.28	mg/kg dry	B080533	0800309

SAMPLE RESULTS

	Method	Analyte	Total or Dissolved	Result	Qualifier	MDL	MRL	Units	Batch	Sequence
0813013-01	Soil/Sediment K-IIb									
	EPA Method 160.3	%тs		75.41		0.10	0.33	%	B080535	N/A
0813013-02	Soil/Sediment K-IIIb				~	,				
	EPA Method 160.3	%TS		76.07		0.10	0.33	%	B080535	N/A
0813013-03	Soil/Sediment C-I									
	EPA Method 160.3	%TS		89.23	۰.	0.10	0.33	%	B080535	N/A
0813013-04	Soil/Sediment K-I					A 1A			D000505	
	EPA Method 160.3	%1S		6.78		0.10	0.33	%	B080535	N/A
0813013-05	Soil/Sediment K-IV EPA Method 160.3	%TS		77.22		0.10	0.33	%	B080535	N/A

QUALITY ASSURANCE SUMMARY

Accuracy and Precision

Batch:	B080533	Method:	EPA Method 163	8 mod.	SOP:	BR-0067	Matrix	c: Soil/Sedir	nent
Analyte		Sample Value	Spike . Value	Result	Units	% Recoverv	% Recovery Limits	Duplicate RPD	RPD Limits
7 analyto				Result		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Laborat	ory Fortified Blar	nk(0816093	3)	B0805	<u>33-BS2</u>				
Cu 65			25.00	28.76	mg/kg dry	115	75-125		
Duplica	te (0813013-01)			B0805	33-DUP1				
Cu 65		58.30		51.38	mg/kg dry			13	30
Matrix S	Spike (0813013-0)1)		B0805	33-MS1				
Cu 65		58.30	31.76	91.75	mg/kg dry	105	70-130		
Matrix S	Spike Duplicate (0813013-0	1)	B <u>0805</u>	<u>33-MSD1</u>				
Cu 65		58.30	32.83	90.16	mg/kg dry	97	70-130	2	30
NIST 27	709			B0805	33-SRM1				
Cu 65			34.60	37.43	mg/kg dry	108	75-125		
<u>NIST 27</u>	/10			B0805	<u>33-SRM2</u>				
Cu 65			2950	3151	mg/kg dry	107	75-125		
Batch:	B080534	Method:	EPA Method 163	8 mod. leacha	ble		Matrix	c: Soil/Sedir	nent
Analyte		Sample Value	Spike Value	Result	Units	% Recovery	% Recovery Limits	RPD	Limits
Laborat	ory Fortified Blar	nk(0816093	3)	B0805	34-BS9				
Cu 65			1.000	1.21	mg/kg dry	121	75-125		

QUALITY ASSURANCE SUMMARY

Accuracy and Precision

Batch: B080534	Method: El		Matrix: Soil/Sediment					
Analyte	Sample Value	Spike Value	Result	Units	% Recovery	% Recovery Limits	Duplicate RPD	RPD Limits
Laboratory Fortified Bl	ank(0816093)		B <u>0805</u>	34-BSA				
Cu 65		1.000	1.16	mg/kg dry	116	75-125		
Laboratory Fortified Bl	ank(0816093)		B0805	34- <u>BSB</u>				
Cu 65		1.000	1.12	mg/kg dry	112	75-125		
Laboratory Fortified Bl	ank(0816093)		B0805	34-BSC				
Cu 65		1.000	1.20	mg/kg dry	120	75-125		
Duplicate (0813013-01)		B0805	34-DUP1			1	
Cu 65	19.10		18.70	mg/kg dry			2	30
Matrix Spike (0813013	-01)		B0805	34-MS3				
Cu 65	19.10	12.71	31.74	mg/kg dry	99	70-130		
					Ĩ			
			<u> </u>					
Batch: B080535	Method: El	PA Method 160.3		SOP:	BR-1501	Matrix	x: Soil/Sedin	nent
Analyte	Sample Value	Spike Value	Result	Units	% Recovery	% Recovery Limits	. Duplicate RPD	RPD Limits
Duplicate (0813013-01)	· · ·	B0805	35-DUP1				
%TS	75.41		74.77	%			0.8	15

QUALITY ASSURANCE SUMMARY

Method Blanks/Detection Limits

Batch: B080533	Method: EPA Me	ethod 1638 mod	•	S	OP: BR-006	7	Matrix:	Soil/Sediment
Analyte	Result	Units						
Cu 65				•				
B080533-BLK1	-0.17	mg/kg dry						
B080533-BLK2	-0.18	mg/kg dry						
B080533-BLK3	-0.17	mg/kg dry						
B080533-BLK4	-0.14	mg/kg dry						
			Average	Average Limits	Standard Deviation	StDev Limits	MDL	MRL
Method Blank Summary			-0.17	1.00	0.02	0.17	0.17	1.00
				1				

Batch: B080534	Method: EPA Me	thod 1638 mo	d. leachable				Matrix:	Soil/Sediment
Analyte	Result	Units						
Cu 65								
B080534-BLK1	-0.01	mg/kg dry						
B080534-BLK2	-0.02	mg/kg dry						
B080534-BLK3	-0.02	mg/kg dry						
B080534-BLK4	-0.02	mg/kg dry						
				Average	Standard	StDev		
			Average	Limits	Deviation	Limits	MDL	MRL
Method Blank Summary			-0.02	0.50	0.01	0.17	0.17	0.50

QUALITY ASSURANCE SUMMARY

Method Blanks/Detection Limits

Batch: B080535	Method: EPA Met	thod 160.3		S	OP: BR-150	1	Matrix:	Soil/Sediment
Analyte	Result	Units						
%TS								
B080535-BLK1	0.02	%						
B080535-BLK2	0.00	%						
				Average	Standard	StDev		
			Average	Limits	Deviation	Limits	MDL	MRL
Method Blank Summary				0.20		0.07	0.10	0.33

.

WORK ORDER 0813013

Customer: North State Resources Contact: Jim Fitzgerald Project ID: NSR-MS0802	Due Date: Receipt Date: Log-in Date:	04/22/08 03/25/08 13:51 03/25/08 13:51
QA Level: Standard EDD: None	Sample Custodian: BRL Project Manager:	Amanda Fawley Amanda Fawley
TAT: 20	Courier:	FedEx
Shipping Container #1	Airbill: Shipping Container: Shipping Container Temp:	944224315019 Default Cooler Ambient
Custody Seals: Present	Shipping Container Coolant:	Ice

. . . .

.

Work order notes: Copy/Relog from 0806042.

BRL Sample ID	Client ID / Site ID			Collection Date/Time	Matrix	Analyte
0813013-01	K-IIb		12	/12/07 10:50	Soil/Sediment	
0813013-01A	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE	<u>Size</u>	<u>Preservation</u>	<u>рН</u>	Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 160.3	Cu Cu %TS
0813013-02	K-lilb		12	/12/07 11:15	Soil/Sediment	
0813013-02A	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE	<u>Size</u>	<u>Preservation</u>	<u>pH</u>	Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 160.3	Cu Cu %TS

WORK ORDER 0813013

Customer: North State Resources Contact: Jim Fitzgerald Project ID: NSR-MS0802

Due Date:04/22/08Receipt Date:03/25/08 13:51Log-in Date:03/25/08 13:51

BRL Sample ID	Client ID / Site ID		Collection Date/Time	Matrix	Analyte
0813013-03	C-I		12/13/07 10:00	Soil/Sediment	
0813013-03A	<u>Container</u> Jar HDPE Jar HDPE Jàr HDPE	<u>Size</u>	Preservation <u>pH</u>	Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 160.3	Cu Cu %TS
0813013-04	K-I		12/12/07 10:35	Soil/Sediment	
0813013-04A	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE	<u>Size</u> 8 oz 8 oz 8 oz	<u>Preservation</u> <u>pH</u>	Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 160.3	Cu Cu %TS
0813013-05	K-IV		12/12/07 11:35	Soil/Sediment	
0813013-05A	<u>Container</u> Jar HDPE Jar HDPE Jar HDPE	<u>Size</u> 8 oz 8 oz 8 oz	<u>Preservation</u> <u>pH</u>	Method: EPA Method 1638 mod. Method: EPA Method 1638 mod. Method: EPA Method 160.3	Cu Cu %TS

١

ustodjan Revie

υ

, 1											ĸ	U f	-)	L h	Ц	-				
	of Z COPY STOMER COPY		FC	e IVW	2-6206	2-6017	@brooksrand.com	d.com	Comments					5	}		•	Time:	Time: 845	
	CUS	· .	L PL		6-63.	3-632	ples(sran		Other (specify)	Ê)		\uparrow	Ŕ			1 、	Ko/	
	Page Vhite: (ellow		s Ra		3: 20	20(sam	orool		Other (specify)	К			\sum	7				$\frac{2}{q}$	
¹² ., ¹	ш>≻		rook	Seattl	hone	ax:	mail	ww.	σ	Other (specify) CAMF	R	1	X),	4	X		Date:	Date:	
		i	10: 10				ш	>	quire	Filtration	K	1)	2					
		.>. •	Ship						ses re	% Solids	\mathcal{D}			5				1,	ŶŴ	
		F							Inalys	As / Se species (specify)		$\left \right\rangle$		5	15			- -		N
	-				5	٦			ب ن	Metals.ICP-MS (specify)	$\left[\right]$	\langle	ľ	5	5			1	N/V	
	cord			2	ارده، ا	erel				Methyl Hg, EPA 1630	K	3		Ś	Κ				IRL by	#
2	Re			5	24-7	Li te	-	200		Total Hg, EPA 1631 ·	Κ	\langle		à	K			d by:	d at E	cking
00	ody		tion)		SM @	3	660	ž	l ation	Other (specify)	Ц	5		\$	5			ceive	ceive	
စို	ust		tirm(mail		Jola	Ŋ	29	Ψ	Fielc	HCI/HNO ₃ /BrCI (circle one)	5	$\left \right\rangle$		\$_				Å	Re	60
J	Of C			2 2	exer.	ame:	Ë	ë	Pre	Unpreserved / ice only	8	Y	×	<u>}</u>		X		0		
	ain (ceipt	5	けら	r's ni	rojec	ject	S	Sample field filtered (Y/N)	€	Ž	Z	3:	了	Z	<u></u>	12		
	Ché	d	ہ تو م) #	aib	nple	ent p	L pro	neou	# of containers	$\left \right\rangle$))-{	-5-			Time	Time	ers:
	·			â E	E	Sat	Ö	BR	scella	Matrix type	5	Ž	S	$\langle \rangle$	n);	Ś		80		cool
					Ļ				Ŵ	Sampler (initials)	2	R	H	37	LX K	Л Л		16/0		to #
1. 14 M.					i go				uc	əwii	Ś	Ś	0		K	3		ate: Z	ate:	2 2 2 2
	Saprol				٩	-	595		llectiv		1 I	aite	24 10			21 67			ñ	0
	NALIXS STATUS	-			<u>ن</u> یک ک		ک		ပိ	بر SDate	ŝ	Kaled Kaled	2V/2U			VZ/IZI		De.S.	>	Ŵ
	BROO		Client: Ewhy Via	Address: 205 (Jerky	WH. Shesta	A STATE OF A	Phone #: (530)217	PO #: 2 10001		Sample ID	1 WAA NA		3 K-Th			7 K-ILO	9010	Relinquished by:	Relinquished by:	Shipping carrier: Led
			۰.	;	, <u>,</u>															

. ...

									14										
									L H) 	L L) r	L)	ロち						
STOMER COPY		8107	2-6206	2-6017	@brooksrand.com	nd.com	Comments		Mar Alkaki Ma	A CALLER AND A CALL)))	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>			Time: *	Time 8454	
Je W: CL	and l		06-63	06-63	mples	oksrai		Other (specify)	K	$\left \right)$			Ş] 、	80/1	
Paç White Velic	oks F		ne: 2	N	ail:sa	<u>v.bro</u>		Other (specify)	Ą	$\left \right $			$\left \right)$	_				9: 2/J	
	Bro 305	Seg	Bla	Fax	ш	MM	ired	Other (specify) CAMTT	R		<u> </u>)		5		X	· /	Dat	Dat	
	ip to:						requ		K		\mid)	5			_	-		
	မ်ာ						lyses	% Solids	K	{)	K			1	-		N
				5			Ana	As / Se species (specify)	K	$\left \right\rangle$	$\left \right\rangle$		<u> </u>					J.	
ord	Î		NO)	Leve.					K				Z.	×		<u>.</u>		L by:	
Reco			-Heel	1/20	Ĭ	70		Total Hg, EPA 1631	Б	K	Ď		K		AAA V		by:	at BR	# Buiy
dy l	ion?{		-WSi	L Z	10%	υχο	ion	Other (specify)	Ď	D	Đ		5				eived	eived	Trac
usto	irmat nail (<u>الم</u>	ĥ)2d	Ś	Field servat	HCI/HNO ₃ /BrCl (circle one)	D	N	\square		5				Rec	Rec	
Of C	confi K / Er	 、	Reve	ime:	Ë	ä	Pres	Unpreserved / ice only	B	Y	ת	× ×	X	×	X	<u> </u>			
ain C	ceipt v Fa)		25	r's ne	rojeci	ject	S	Sample field filtered (Y/N)	Ż	注	ZŦ	2	Ę.	Z :	27	zΖ	100		
Che	C re es. b	#	ail) (mple	ent pi	L pro	noəu	# of containers .	5	F	-5	-	3				Time:	Time:	ers:
	° ≥ S	Fa)	ľ	Sai	ö	BR	iscella	Matrix type	b	do la	ng	N	Þ	Ś	ni	N3	8		cool
							M	Sampler (initials)	ß	K	L'	ビレ	K	Ц		2 1 1 1 1	1/0/0		# of
ND opucts	in .		4	-	M		ion	-əmiT	Ŕ	Ц С	S S	115	NE	82)ate: 7)ate:	
SRA SIST APPR	SR b	5	, 9hr	<u>ا</u> ک	846	•	ollect		10 K	NFarz	1 10/2	14012	15 COLA	1 1072		1 tors	, H		
SANAL	N			5	Ļ		S		Š	3	22	121	<u>ि</u> र	2	2 2	<u>E</u>	1. Here	>	Ê
BROC	ilient: Ewhynix Via ontact: 71 m tiff	ddress: 305 ()	int. Shest		hone #: (530) 22	0#: 26601		Sample ID	- LANTAN	S SALAN	K-H-H-W	K-Them	NATANY !!	N-H-N		WG 1-8-1 0	elinquished by:	elinquished by:	hipping carrier: Fee
	00	ין∢			D	0			1	CA	1014	10		י~ן י		″ ∓ "	R	ц	S

.

...

0806042

3 of 3 NB COPY USTOMER C NUE NW 98107 98107 32-6017 \$@brooksra and.com		Time:
	×	ate:
Solids' Solids' 65		
As / Se species (specify)		
Metals ICP-MS (specify)		
	× X	民L 社
		d by: ckinc
		ceive ceive L T ra
	1	Re BR
	< × ×	
	222	1 100
		Time: Time: ers:
	<u>у</u> S	cool
≤ Sampler (initials)	い	בונוכ # of
	010	Date:
Read to the second seco	13107 1	X. FL
		あて
BROOC Sample ID Sample ID Samp		kelinquished by: Tim F kelinquished by: Shipping carrier: Fee

0806042

-3 --