Lab Sample ID	Station Code	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Hydroxide Alkalinity as CaCO3, mg/L	Carbonate Alkalinity as CaCO3,mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-132-03-1	OC3	0.022	0.36	< 0.05	0.0211	< 0.03	0.0450	0	0	32.7	69	27.4	6.6	< 0.10	< 0.0050	< 0.0050
L-132-03-2	OC4	0.019 J	0.28	< 0.05	0.0134	< 0.03	0.0555	0	0	27.3	72	24.5	1.5	< 0.10	< 0.0050	< 0.0050
L-132-03-3	KF1	0.017 J	0.27	< 0.05	0.0122	< 0.03	0.0453	0	0	28.2	44	22.5	< 1.00	< 0.10	< 0.0050	< 0.0050
L-132-03-4	MC1	0.026	0.86	< 0.05	0.0263	< 0.03	0.0734	0	0	61.0	99	53.9	1.6	< 0.10	< 0.0050	< 0.0050
L-132-03-5	SC1	0.024	0.44	< 0.05	0.0176	< 0.03	0.0481	0	0	32.4	67	27.4	2.2	< 0.10	< 0.0050	< 0.0050
L-132-03-6	SC4	0.026	0.55	< 0.05	0.0189	< 0.03	0.0466	0	0	37.9	70	34.3	5.9	< 0.10	< 0.0050	< 0.0050
L-132-03-7	SC5	0.027	0.51	< 0.05	0.0193	< 0.03	0.0549	0	0	42.0	69	35.3	3.5	< 0.10	< 0.0050	< 0.0050
	CCF1	0.024	0.43	< 0.05	0.0177	< 0.03	0.0437	0	0	33.9	72	28.4	1.9	< 0.10	< 0.0050	< 0.0050
Method Blank		0.015 J	< 0.2	< 0.05	< 0.005	< 0.03	< 0.005	0	0	3.2 J	< 10	< 1.0	< 1.00	< 0.10	< 0.0050	< 0.0050
MDL		0.01	0.2	0.05	0.005	0.03	0.005	0.5	0.5	1.6	10	1.0	1.0	0.045	0.002	0.005
RL		0.02	0.25	0.100	0.0100	0.050	0.0100	1.0	1.0	10.0	12	1.0	1.0	0.10	0.0050	0.0050
Method		EPA 340.2	EPA 300.0	EPA 350.3	QC 10115011M	EPA 365.3	QC 10107041B	EPA 310.1	EPA 310.1	QC10303311A	SM 2540	SM 2340C	SM 2540C	SM4500BB	SM4500CN-E	SM3113B
MDL - Method	Detect	ion Limit			J - detected but n	ot quantified			RL - Reportir	ng Limit						

EPA - Methods for Chemical Analysis of Water and Wastewater, EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Dissolved Iron,	
	mg/L	
Reference Standard ID	Standard	
True Value Ref Std	0.0160	
Laboratory Result	0.0160	
% Recovery Ref Std	100	
Spiked Sample ID	L-132-03-3	
MS actual value	0.0144	
MSD actual value	0.0150	
Matrix spike expected value	0.0150	
MS % of expected value	96.0	
MSD % of expected value	100	
RPD	4.08	
_		
Sample Duplicate ID	L-132-03-7	
Sample Value	0.0330	
Duplicate Value	0.0330	
RPD	0.00	

Laboratory Director

DEPARTMENT OF FISH AND GAME FISH AND WILDLIFE WATER POLLUTION CONTROL LABORATORY

2005 NIMBUS ROAD RANCHO CORDOVA, CA 95670 PHONE (916) 358-2858 ATSS 8-434-2858 FAX (916) 985-4301

LABORATORY REPORT

Name: Agency: Address: City:	Brian Frantz PG&E 3400 Crow Canyon R San Ramon, CA 9458		Lab Number: Other Number: Date Sampled: Date Received: Date Completed:	L-132-03 supplementary 03/18/03 03/19/03 05/17/03				
RE:	Kilrac-Cow		Index-PCA Code:					
RESULTS	OF CHEMICAL ANALY	SIS:						
Laboratory Identificati		Sample Description		olved Iron, mg/L				
L-132-03-	1	OC3	0	.0110				
L-132-03-2	2	OC4	0	.0140				
L-132-03-3	3	KF1	0	.0064				
L-132-03-4	1	MC1	0	0.0940				
L-132-03-	5	SC1	0	.0133				
L-132-03-6	5	SC4	0	.0290				
L-132-03-7	7	SC5	0	.0330				
L-132-03-8	3	CCF1	0	.0210				
Report Lin Detection				.0050 .0012				
See attach	ned sheet for QA sumr	nary						
Methods for		of Water and Wastewa Traphite Furnace AAS.	ter, EPA-600/4-79-0	20, March 1983,				
Cost of An	alysis: \$400.0	00						
Analyst: Sierr	a Foothills Laboratory							
Inorganic Sec	ction Leader	Date	Reviewed by	 Date				

Date

	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-F-01-25	IPS-anions-mix-02-37	IPS-NH3-02-13B	IPS-anions-mix-02-37	IPS-nutrient-02-53	IPS-anions-mix-02-37	IPS-min-03-2D	IPS-MIN-03-2B	IPS-HARD-03-3A	IPS-HARD-03-3A	Standard	Standard	Standard
True Value Ref Std	1.00	20.0	10.0	0.0487	0.100	0.0530	65.4	323	244	32.3	0.50	0.19	0.015
Laboratory Result	1.01	19.5	10.8	0.0490	0.103	0.0609	65.8	365	237	28.4	0.53	0.18	0.0144
% Recovery Ref Std	101	97.5	108	101	103	115	101	113	97.1	87.9	106	94.7	96.0
Spiked Sample ID	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1	L-132-03-1				534878	534873	
MS actual value	2.15	2.69	21.3	0.0436	0.188	0.0907	58.3				1.23	0.0226	
MSD actual value	2.12	2.65	21.5	0.0435	0.193	0.0911	59.4				1.17		
Matrix spike expected value	2.02	2.68	20.0	0.0436	0.227	0.0928	57.4				1.0	0.024	
MS % of expected value	106	100	107	100	82.8	97.7	102				123	94.2	
MSD % of expected value	105	98.9	108	99.8	85.0	98.2	103				117		
RPD	1.41	1.50	0.93	0.23	2.62	0.44	1.87				5.00		
Sample dilution for MS		1/2		·									
Sample Duplicate ID								L-132-03-8	L-134-03-1	L-134-03-1	534877	534872	
Sample Value								69	24.5	1.0	< 0.10	< 0.0050	
Duplicate Value								75	24.5	1.0	< 0.10	< 0.0050	
RPD								8.33	0.00	0.00	0.00	0.00	

LabSampleID	Station Code	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Hydroxide Alkalinity as CaCO3, mg/L	Carbonate Akalinity as CaCO3,mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness, mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-134-03-1	OC1	0.019 J	0.26	< 0.05	0.0138	< 0.03	0.110	0	0	30.4	46	24.5	1.0	< 0.10	< 0.0050	< 0.0050
Method Blank		0.01 J	< 0.2	< 0.05	< 0.005	< 0.03	< 0.005	0	0	3.2 J	< 10	< 1.0	< 1.0	< 0.10	< 0.0050	< 0.0050
MDL		0.01	0.2	0.05	0.005	0.03	0.005	0.5	0.5	3	10	1.0	1.0	0.045	0.002	0.005
RL		0.02	0.25	0.100	0.0100	0.0500	0.0100	1.0	1.0	10.0	12	1.0	1.0	0.10	0.0050	0.0050
Method		EPA 340.2	EPA 300.0	EPA 350.3	QC 10115011M	QC 10115011D	QC 10107041B	EPA 310.1	EPA 310.1	QC10303311A	SM 2540	SM 2340C	SM 2540C	SM4500BB	SM4500CN-E	SM3113B
MDL - Metho	d Dete	ction Limit			J - detected but	not quantified			RL - Reporting I	_imit						

EPA - Methods for Chemical Analysis of Water and Wastewater EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - <u>Standard Methods for the Examination of Water and Wastewater</u> 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Dissolved Iron, mg/L
Reference Standard ID	Standard
True Value Ref Std	0.0160
Laboratory Result	0.0150
% Recovery Ref Std	93.8
Spiked Sample ID	L-134-03-1
MS actual value	0.0128
MSD actual value	0.0128
Matrix spike expected value	0.0150
MS % of expected value	85.3
MSD % of expected value	85.3
RPD	0.00

Laboratory Director

Date

DEPARTMENT OF FISH AND GAME FISH AND WILDLIFE WATER POLLUTION CONTROL LABORATORY

2005 NIMBUS ROAD RANCHO CORDOVA, CA 95670 PHONE (916) 358-2858 ATSS 8-434-2858 FAX (916) 985-4301

LABORATORY REPORT

Name: Agency: Address: City:	Brian Frantz PG&E 3400 Crow canyon R San Ramon, CA 9458		Lab Number: Other Number: Date Sampled: Date Received: Date Completed: Index-PCA Code:	L-134-03 supplementary 03/19/03 03/20/03 05/14/03
RE:	Kilrac-Cow			
RESULTS (OF CHEMICAL ANALY	SIS:		
Laboratory Identification		Sample Description		ved Iron, ng/L
L-134-03-1	I	OC1	0.0	0060
Report Lim Detection				0050 0012
See attach	ned sheet for QA sumr	nary		
Methods for		of Water and Wastewa raphite Furnace AAS.	<u>ter,</u> EPA-600/4-79-02	20, March 1983,
Cost of An	alysis: \$50.00)		
Analyst: Sierra	a Foothills Laboratory			
Inorganic Sec	etion Leader	Date	Reviewed by	Date

					ø	<u> </u>				_			T 1
	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphoru: as P, mg/L	Nitrite + Nitrate a N, mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-F-01-25	IPS-anions-mix-02-37	IPS-NH3-02-13B	IPS-anions-mix-02-37	IPS-nutrient-02-53	IPS-anions-mix-02-37	IPS-min-03-2D	IPS-MIN-03-2B	IPS-HARD-03-3A	IPS-HARD-03-3A	Standard	Standard	Standard
True Value Ref Std	1.00	20.0	10.0	0.0487	0.0835	0.0530	65.3	323	244	32.3	0.5	0.19	15
Laboratory Result	1.01	19.6	10.8	0.0487	0.0905	0.0542	65.8	365	237	28.4	0.53	0.18	14.4
% Recovery Ref Std	101	98.0	108	100	108	102	101	113	97.1	87.9	106	94.7	96.0
Spiked Sample ID	L-134-03-1	L-132-03-1	L-132-03-1	L-134-03-1	L-134-03-1	L-147-03-16	L-132-03-1				534619	534873	
MS actual value	1.96	2.69	21.3	0.0372	0.133	0.612	58.3				1.13	0.0226	
MSD actual value	2.04	2.65	21.5	0.0379	0.134	0.610	59.4				1.04		
Matrix spike expected value	2.02	2.68	20.0	0.0371	0.143	0.614	57.4				1.0	0.024	
MS % of expected value	97.0	100	107	100	93.0	99.7	102				113	94	
MSD % of expected value	101	98.9	108	102	93.7	99.3	103				104		
RPD	4.00	1.50	0.93	1.86	0.75	0.33	1.87				8.29		
Sample Duplicate ID								L-132-03-8	L-134-03-1	L-134-03-1	534929	534872	
Sample value								69	24.5	1.0	0.36	< 0.0050	
Duplicate value								75	24.5	1.0	0.42	< 0.0050	
RPD								8.33	0.00	0.00	15.4	0.00	

LabSampleID	Station Code	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nitrite + Nitrate as N, mg/L	Hydroxide Alkalinity as CaCO3, mg/L	Carbonate Alkalinity as CaCO3,mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-150-03-1	NC1	0.015 J	0.30	< 0.05	0.0122	< 0.03	0.0789	0	0	20.8	50	21.8	3.9	< 0.10	< 0.0050	< 0.0050
L-150-03-2	CC1	0.024	0.49	0.065 J	0.0331	< 0.03	0.0647	0	0	57.8	97	49.5	2.0	< 0.10	< 0.0050	< 0.0050
L-150-03-3	CC2	0.030	0.36	0.072 J	0.0439	< 0.03	0.0684	0	0	37.0	79	32.2	6.0	< 0.10	< 0.0050	< 0.0050
Method Blan	k	0.015 J	< 0.2	< 0.05	< 0.005	< 0.03	< 0.005	0	0	< 1.6	< 10	< 1.0	< 1.0	< 0.10	< 0.0050	< 0.0050
MDL		0.01	0.2	0.05	0.005	0.03	0.005	0.5	0.5	1.6	10	1.0	1.0	0.045	0.002	0.005
RL		0.02	0.25	0.100	0.0100	0.0500	0.0100	1.0	1.0	10.0	12	1.0	1.0	0.10	0.0050	0.0050
Method		EPA 340.2	EPA 300.0	EPA 350.3	QC 10115011M	QC 10115011D	QC 10107041B	EPA 310.1	EPA 310.1	QC10303311A	SM 2540	SM 2340C	SM 2540C	SM4500BB	SM4500CN-E	SM3113B
MDL - Meth	od Dete	ection Limit			J - detected but	not quantified			RL - Reporting L	₋imit						

EPA - Methods for Chemical Analysis of Water and Wastewater, EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - <u>Standard Methods for the Examination of Water and Wastewater</u> 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Dissolved Iron, mg/L
Reference Standard ID	Standard
True Value Ref Std	0.0160
Laboratory Result	0.0160
% Recovery Ref Std	100
Spiked Sample ID	536594
MS actual value	0.0144
MSD actual value	0.0150
Matrix spike expected value	0.0150
MS % of expected value	96.0
MSD % of expected value	100
RPD	4.08

Laboratory Director

DEPARTMENT OF FISH AND GAME FISH AND WILDLIFE WATER POLLUTION CONTROL LABORATORY

2005 NIMBUS ROAD RANCHO CORDOVA, CA 95670 PHONE (916) 358-2858 ATSS 8-434-2858 FAX (916) 985-4301

LABORATORY REPORT

Name: Agency: Address: City:	Brian Frantz PG&E 3400 Crow canyon R San Ramon, CA 945		Lab Number: Other Number: Date Sampled: Date Received: Date Completed: Index-PCA Code:	L-150-03 supplementary 03/26/03 03/27/03 05/17/03					
RE:	Kilrac-Cow								
RESULTS	OF CHEMICAL ANALY	SIS:							
Laboratory Identificati		Sample Description		lved Iron, ng/L					
L-150-03-	I	NC1	0.0150						
L-150-03-2	2	CC1	0.0	0088					
L-150-03-0	3	CC2	0.0073						
Report Lin Detection				0050 0012					
See attach	ned sheet for QA sumr	nary							
Methods for		of Water and Wastewa Graphite Furnace AAS.	<u>ter,</u> EPA-600/4-79-02	20, March 1983,					
Cost of An	alysis: \$150.0	00							
Analyst: Sierr	a Foothills Laboratory								
Inorganic Sec	ction Leader	Date	Reviewed by	 Date					

Date

	Fluoride, mg/L	Chloride, mg/L	Ammonia as N, mg/L	Ortho phosphate as P, mg/L	Total Phosphorus as P, mg/L	Nirrie + Nirrate as N, mg/L	Bicarbonate Alkalinity as CaCO3, mg/L	Total Dissolved Solids, mg/L	Hardness,mg/L	Total Suspended Solids, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-F-01-25	IPS-anions-mix-02-37	IPS-NH3-02-13B	IPS-anions-mix-02-37	IPS-nutrient-02-53	IPS-anions-mix-02-37	IPS-min-03-2D	IPS-MIN-03-2B	IPS-HARD-03-3B	IPS-HARD-03-3A	Standard	Standard	Standard
True Value Ref Std	1.00	20.0	10.0	0.0487	0.0835	0.0530	65.3	323	244	32.3	0.50	0.19	15
Laboratory Result	1.01	18.9	11.2	0.0490	0.0751	0.0574	64.4	332	234	31.6	0.58	0.19	13.8
% Recovery Ref Std	101	94.5	112	101	89.9	108	98.6	103	95.9	97.8	116	100	92.0
Spiked Sample ID	L-132-03-1	L-150-03-1	L-150-03-1	L-150-03-1	L-150-03-1	L-150-03	L-147-03-15				534619	534883	
MS actual value	2.15	0.76	9.87	0.0361	0.123	0.124	247				1.13	0.0226	
MSD actual value	2.12	0.77	10.1	0.0357	0.125	0.125	246				1.04		
Matrix spike expected value	2.02	0.77	10.0	0.0357	0.136	0.125	251				1.0	0.0240	
MS % of expected value	106	98.7	98.7	101	90.4	99.2	98.4				113	94.2	
MSD % of expected value	105	100	101	100	91.9	100	98.0				104		
RPD	1.41	1.31	2.30	1.11	1.61	0.80	0.41				8.29		
Sample Duplicate ID Sample Value								L-150-03-3 79	L-150-03-3 31.7	L-156-03-7 1.3	534583 10	534882 < 0.0050	
Duplicate Value								79 79	31.7	1.3	10	< 0.0050	
RPD								0.00	3.11	0.00	0.00	0.00	

LabSampleID	Station Code	Sample Collection Date	Total Alkalinity as CaCO3, mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO3, mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho Phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
	KF1	10/1/2003	58.8	< 0.05	0.33 J	49.0	0.025 J	0.0587	0.0188	76	5.8	< 0.015	< 0.0020	< 0.10	< 0.0050	< 0.005
L-483-03-2	OC1	10/1/2003	44.8	< 0.05	0.32 J	49.5	0.032 J	0.0546	0.0242	76	< 1.0	< 0.015	< 0.0020	< 0.10	< 0.0050	< 0.005
L-483-03-3	OC3	10/1/2003	48.7	< 0.05	0.55	49.5	0.035 J	0.0571	0.0361	90	1.5	0.0202 J	0.0099	< 0.10	< 0.0050	< 0.005
L-483-03-4	OC4	10/1/2003	46.5	< 0.05	0.34 J	50.0	0.028 J	0.0696	0.0228	77	1.4	< 0.015	0.0024 J	< 0.10	< 0.0050	< 0.005
L-483-03-5	SC1	10/1/2003	48.1	< 0.05	0.43	51.0	0.030 J	0.0532	0.0283	92	< 1.0	< 0.015	0.0474	< 0.10	< 0.0050	< 0.005
L-483-03-6	CCF1	10/1/2003	58.0	< 0.05	0.58	59.8	0.029 J	0.0586	0.0326	101	1.2	0.0164 J	0.0433	< 0.10	< 0.0050	< 0.005
L-483-03-7	SC4	10/1/2003	63.2	< 0.05	0.60	67.6	0.030 J	0.0787	0.0354	113	1.1	< 0.015	0.0188	< 0.10	< 0.0050	< 0.005
L-483-03-8	SC5	10/1/2003	65.0	< 0.05	0.60	67.6	0.029 J	0.0829	0.0358	109	1.4	0.0157 J	0.0233	< 0.10	< 0.0050	< 0.005
L-483-03-9	MC1	10/1/2003	80.5	< 0.05	0.81	87.0	0.029 J	0.119	0.0519	136	5.2	0.0299 J	0.0154	< 0.10	< 0.0050	< 0.005
Method Blank			< 3	< 0.05	< 0.2	< 1.0	< 0.02	< 0.001	< 0.001	< 10	< 1.0	< 0.015	< 0.0020		< 0.0050	
MDL			3	0.05	0.2	1.0	0.02	0.001	0.001	10	1.0	0.015	0.0020	0.0450	0.0020	0.005
RL			8.0	0.10	0.35	1.0	0.050	0.0080	0.0080	12	1.0	0.0500	0.0050	< 0.10	< 0.0050	< 0.0050
Method			QC10303311A	EPA 350.3	EPA 300.0	SM 2340C	SM 4500-F C	QC 10107041B	QC 10115011M	SM 2540	SM 2540C	QC 10115011D	SM 3113	SM 4500BB	SM 4500CN-E	SM 3113B
Date of Analysis			10/13/2003	10/7/2003	10/17/2003	10/2/2003	10/2/2003	10/3/2003	10/2/2003	10/8/2003	10/2/2003	10/6/2003	10/3/2003	10/7/2003	10/8/2003	10/17/2003
MDL - Method De	etection Lim	it		J - detected bu	t not quantified				_							

EPA - Methods for Chemical Analysis of Water and Wastewater , EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - <u>Standard Methods for the Examination of Water and Wastewater</u>, 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Total Alkalinity as CaCO ₃ , mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO ₃ , mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron GFAAS, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-min-03-11A	IPS-NH3-02-13A	IPS-anions-mix-02-57	IPS-HARD-03-40E	IPS-F-01-35	IPS-anions-mix-02-57	IPS-anions-mix-02-57	IPS-min-03-24C	IPS-HARD-03-40E	IPS-nutrient-02-53	IPS-1640-03-1	Standard	Standard	Standard
True Value Ref Std	58.8	1.00	20.0	112	1.00	0.0530	0.0487	355	60.5	0.0835	0.0343	0.50	0.19	0.0150
Laboratory Result	67.7	1.15	19.4	118	1.08	0.0555	0.0475	339	58.7	0.0900	0.0312	0.49	0.18	0.0140
% Recovery Ref Std	115	115	97.0	105	108	105	97.5	95.5	97.0	108	91.0	98.0	94.7	93.3
Spiked Sample ID	Run with L-487-03-1	L-483-03-2	L-483-03-9		L-483-03-1	L-483-03-1	L-483-03-1			L-483-03-1	L-483-03-3	L-483-03-2	L-483-03-2	L-483-03-5
MS actual value	76.5	2.05	1.17		1.91	0.165	0.0417			0.139	0.0144	0.960	0.0461	0.0103
MSD actual value	75.0	2.24	1.19		1.93	0.162	0.0420			0.135	0.0146			0.0098
Matrix spike expected value	76.6	2.02	1.23		2.02	0.153	0.0419			0.138	0.0135	1.00	0.0480	0.0100
MS % of expected value	99.9	101	95.1		94.6	108	99.5			101	107	96.0	96.0	103
MSD % of expected value	97.9	111	96.7		95.5	106	100			97.8	108			98.0
RPD	1.98	8.86	1.69		1.04	1.83	0.72			2.92	1.38			4.98
Sample Duplicate ID				L-483-03-9				L-483-03-1	IPS-HARD-03-40E			L-483-03-1	L-483-03-1	L-483-03-3
Sample Value				89.2				76	57.7			< 0.10	< 0.0050	< 0.005
Duplicate Value Sample Average				84.8 87.0				77 76	59.7 58.7			< 0.10 < 0.10	< 0.0050 < 0.0050	< 0.005 < 0.005
RPD				5.06				1.31	3.41			0.00	0.00	0.00

LabSampleID	Station Code	Sample Collection Date	Total Alkalinity as CaCO3, mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO3, mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho Phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
L-487-03-1	CC1	10/2/2003	52.1	< 0.05	0.46	50.4	0.031 J	0.0547	0.0542	104	7.7	0.0932	< 0.0020	< 0.10	< 0.0050	< 0.005
L-487-03-2	CC2	10/2/2003	29.8	< 0.05	0.38	30.5	0.047 J	0.0773	0.0523	81	< 1.0	0.0410 J	0.0020 J	< 0.10	< 0.0050	< 0.005
L-487-03-3	NC1	10/2/2003	54.4	< 0.05	0.35	51.9	0.036 J	0.0408	0.0302	94	1.0	< 0.015	< 0.0020	< 0.10	< 0.0050	< 0.005
Method Blank			< 3	< 0.05	< 0.2	< 1.0	0.020 J	< 0.001	< 0.001	< 10	< 1.0	< 0.015	< 0.0020		< 0.0050	
MDL			3	0.05	0.2	1.0	0.02	0.001	0.001	10	1.0	0.015	0.0020	0.0450	0.0020	0.005
RL			8.0	0.10	0.35	1.0	0.050	0.0080	0.0080	12	1.0	0.0500	0.0050	< 0.10	< 0.0050	< 0.0050
Method			QC10303311A	EPA 350.3	EPA 300.0	SM 2340C	SM 4500-F C	QC 10107041B	QC 10115011M	SM 2540	SM 2540C	QC 10115011D	SM 3113	SM 4500BB	SM 4500CN-	SM 3113B
Date of Analysis			10/13/2003	10/6/2003	10/14/2003	10/7/2003	10/14/2003	10/3/2003	10/3/2003	10/8/2003	10/7/2003	10/6/2003	10/3/2003	10/7/2003	10/8/2003	10/17/2003
MDL - Method De	L etection Lim	l nit		J - detected bu	t not quantified											

EPA - Methods for Chemical Analysis of Water and Wastewater_, EPA-600/4-79-020, March 1983.

QC - Lachat Quikchem Flow Injection Analyzer Method

SM - Standard Methods for the Examination of Water and Wastewater, 18th edition, 1992, American Public Health Association, American Water Works Association, Water Pollution Control Federation.

	Total Alkalinity as CaCO3, mg/L	Ammonia as N, mg/L	Chloride, mg/L	Hardness as CaCO ₃ , mg/L	Fluoride, mg/L	Nitrite + Nitrate as N, mg/L	Ortho phosphate as P, mg/L	Total Dissolved Solids, mg/L	Total Suspended Solids, mg/L	Total Phosphorus as P, mg/L	Dissolved Iron GFAAS, mg/L	Boron, mg/L	Cyanide, mg/L	Molybdenum, mg/L
Reference Standard ID	IPS-min-03-11A	IPS-NH3-02-13A	IPS-anions-mix-02-57	IPS-HARD-03-40A	IPS-F-01-35	IPS-anions-mix-02-57	IPS-anions-mix-02-57	IPS-min-03-24C	IPS-HARD-03-40E	IPS-nut-02-53	IPS-1640-03-1	Standard	Standard	Standard
True Value Ref Std	58.8	1.00	20.0	112	1.00	0.0530	0.0487	355	60.5	0.0835	0.0343	0.50	0.19	0.0150
Laboratory Result	67.7	1.13	18.7	107	1.14	0.0555	0.0478	339	64.4	0.0900	0.0312	0.49	0.18	0.0138
% Recovery Ref Std	115	113	93.5	95.5	114	105	98.1	95.5	106	108	91.0	98.0	94.7	92.0
Spiked Sample ID	L-487-03-1	L-487-03-2	L-487-03-1		L-487-03-1	Run with L-483-03-1	L-487-03-1			Run with L-483-03-1	Run with L-483-03-3	Run with L-483-03-2	Run with L-483-03-2	Run with L-483-03-1
MS actual value	76.5	1.91	0.84		2.04	0.165	0.0742			0.139	0.0144	0.960	0.0461	0.0105
MSD actual value	75.0	1.96	0.85		2.07	0.162	0.0745			0.135	0.0146			
Matrix spike expected value	76.6	2.03	0.91		2.03	0.153	0.0738			0.138	0.0135	1.00	0.0480	0.0100
MS % of expected value	99.9	94.1	92.3		100	108	101			101	107	96.0	96.0	105
MSD % of expected value	97.9	96.6	93.4		102	106	101			97.8	108			
RPD	1.98	2.58	1.18		1.46	1.83	0.40			2.92	1.38			
Sample Duplicate ID				L-487-03-1				Run with L-483-03-1	L-487-03-1			L-483-03-1	L-483-03-1	L-483-03-3
Sample Value				50.4				76	7.6			< 0.10	< 0.0050	< 0.005
Duplicate Value				50.4				77	7.9			< 0.10	< 0.0050	< 0.005
Sample Average				50.4				76	7.7			< 0.10	< 0.0050	< 0.005
RPD				0.00				1.31	3.87			0.00	0.00	0.00

			1 1 2	2003		
	March	May	June	July	August	0
Time	10:00	16:25	13:14	13:15	10:54	
In situ Parameters						
Water Temperature (°C) Dissolved Oxygen (mg/L)	5.31	8.85 10.16	9.23	11.60 10.25	9.78	9
Specific Conductance (µmhos/cm)	52	54	79	102	10.98	+ +
pH	7.98	7.68	8.06	8.25	8.23	1
Turbidity (NTU)	2.8	< 0.5	1.0	0.1	1.5	
Depth (M)	1.0	1.0	1.0	1.0	1.0	
Analytical Parameters						
Total Coliform (MPN/100 mL)	80	NS	NS	NS	NS	
Fecal Coliform (MPN/100 mL)	2	NS	NS	NS	NS	
Total Metals:						\mathbf{H}
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	+
Barium (mg/L)	0.0037	NS	NS	NS	NS	0.0
Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<0
Copper (µg/L)	0.11	NS NS	NS NS	NS NS	NS NS	<0
Lead (μg/L) Manganese (μg/L)	0.035 4.6	NS NS	NS NS	NS NS	NS NS	<0
Silver (μg/L)	<0.008	NS	NS	NS	NS	<0
Zinc (µg/L)	0.43	NS	NS	NS	NS	<
Dissolved Metals:						
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	+
Barium (mg/L)	0.003	NS	NS	NS	NS	0.0
Cadmium (µg/L)	< 0.002	NS	NS	NS	NS	<0
Copper (µg/L)	0.07 0.015	NS NS	NS NS	NS NS	NS NS	<0.0
Iron (mg/L) Lead (μg/L)	<0.013	NS	NS	NS NS	NS	<0.0
Manganese (μg/L)	0.24	NS	NS	NS	NS	<0
Mercury (μg/L)	0.00221	NS	NS	NS	NS	0.000
Silver (µg/L)	<0.008	NS NS	NS NS	NS NS	NS NS	<0
Zinc (μg/L)	0.3	INS	NS NS	INS	NS NS	-
Ammonia - Total (mg/L)	< 0.05	NS	NS	NS	NS	<
Total Hardness, as CaCO3 (mg/L)	21.8	NS	NS	NS	NS	+
Chloride (mg/L) Fluoride (mg/L)	0.30 0.02 J	NS NS	NS NS	NS NS	NS NS	0
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0789	NS	NS	NS	NS	0.0
Alkalinity - Total (mg/L)	21	NS	NS	NS	NS	
Total Dissolved Solids (mg/L)	50	NS	NS	NS	NS	
Total Suspended Solids (mg/L) Total Phosphorous (mg/L)	3.9 <0.03	NS NS	NS NS	NS NS	NS NS	<0
Orthophosphate (mg/L)	0.0122	NS	NS	NS	NS	0.0
Total Calcium (mg/L)	5.33	NS	NS	NS	NS	1
Total Magnesium (mg/L)	2.20	NS	NS	NS	NS	
Total Sodium (mg/L) Dissolved Calcium (mg/L)	2.14 5.24	NS NS	NS NS	NS NS	NS NS	1
Dissolved Magnesium (mg/L)	2.2	NS	NS	NS	NS	1
Dissolved Sodium (mg/L)	2.12	NS	NS	NS	NS	
Total Boron (mg/L)	<0.10	NS	NS	NS	NS	
Cyanide (mg/L) Molybdenum (mg/L)	<0.0050 <0.0050	NS NS	NS NS	NS NS	NS NS	<0.0
PCBs						
Aroclor 1016 (μg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1221 (µg/L)	<1.0	NS	NS	NS	NS	
Arcelor 1242 (µg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	++
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
Aroclor 1248 (µg/L) Aroclor 1254 (µg/L)	<1.0	NS	NS	NS	NS	##
Aroclor 1260 (µg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1268 (μg/L)	<1.0	NS	NS	NS	NS	
J = Estimated concentration below the rep	orting limit (DI) and	ahove the method do	ection limit (MDI) +	he MDL is based on a	etatistical	
calculation, the RL is normally set to 5 to				HE MIDE IS DASED ON A	Statistical	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	March	Flag	California	Toxics Rule	s Criteria (USEPA) ¹			Recommended ² Quality Criteria		t. of Public (CDPH) 3	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	1 30-day average)
urversion)		Ů	Fresh	water Aquatic	Life Protection	Fresh	water Aquatic	Life Protection			Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	10:00 5.31 10.05 52 7.98 2.8		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.10 0.00370 <0.002 0.11000 0.03500 4.60000 <0.008 0.43000 <0.10 <0.002 0.07000 <0.01 2.21E-03 <0.008 0.30000		0.7445 2.5383 0.4576 32.9603 150 0.7242 2.4368 0.4635	0.8103 3.3327 11.7432 32.9603 340 0.8166 3.1994 11.8953	0.2955 0.25117	0.08754 2.5383 0.4576 32.9603 150 0.08516 2.4368 0.4635 0.77 32.4988	0.45342 3.3327 11.7432 32.9603 340 0.4569 3.1994 11.8953 1.40 32.2351	0.2755 0.23419	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	2 <0.05 21.8 0.3 0.0 0.1 20.8 50.0 <0.0050 0.0	J	0.0052 0.014	0.022		2.50 230 ≥ 20 0.0052 0.014	5.83 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	May	Flag	California	Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	16:25														
In situ Parameters															
Water Temperature (°C)	8.85														
Dissolved Oxygen (mg/L)	10.16												>7		
Specific Conductance (mmhos/cm)	54									900					
pH (Standard Units)	7.68							6.5-9.0					6.5-8.5		
Turbidity (NTU)	< 0.5									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:14														
In situ Parameters															
Water Temperature (°C)	10.28														
Dissolved Oxygen (mg/L)	9.23												>7		
Specific Conductance (mmhos/cm)	79									900					
pH (Standard Units)	8.06							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.0									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC1 (North Canyon Creek above diversion)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:15														
In situ Parameters															
Water Temperature (°C)	11.60														
Dissolved Oxygen (mg/L)	10.25												>7		
Specific Conductance (mmhos/cm)	102									900					
pH (Standard Units)	8.25							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NC1 (North Canyon Creek above diversion)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept Health (of Public	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, , ,			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:54														
In situ Parameters															
Water Temperature (°C)	9.78														
Dissolved Oxygen (mg/L)	10.98												>7		
Specific Conductance (mmhos/cm)	105									900					
pH (Standard Units)	8.23							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.5									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NC1 (North Canyon Creek above diversion)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (EPA	RWQCB 4 Basin Plan	CTR (Human Health	
<u> </u>			Fresh	nwater Aquation	Life Protection	Fresh	water Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time	8:44		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	9.21 9.48 117 8.10 0.0							6.5-9.0		900 5			>7 6.5-8.5		
•															
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L)	<0.10 0.00580 <0.002 <0.003 <0.002 1.05000 <0.008 <0.002 <0.10 <0.002 <0.003 <0.002 3.95E-04 <0.008 <0.002		1.4711 5.3265 1.3806 68.7350 150 1.3776 5.1134 1.2240	2.1557 7.5462 35.4273 68.7350 340 2.0942 7.2444 31.4087	1.3137 1.11662	0.16647 5.3265 1.3806 68.7350 150 0.15589 5.1134 1.2240 0.77 67.7727	1.09513 7.5462 35.4273 68.7350 340 1.0639 7.2444 31.4087 1.40 67.2228	1.2249 1.04113	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5	4 <0.05					2.10	4.64						200/400		
Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L)	51.9 0.4 0.0 0.0 54.4	J				230 ≥ 20	860		2 10	250	4 10	250 2			
Arkainity - Total (hig/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	94.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

		C	CF1 (Cow C	reek Foreb	ay)				
						2022			
						2003	1		
	Marc	h	May		June		July	August	Octo
-	Whate		Iviay		June		July	August	Octo
Time	8:00		8:18		7:52		8:16	17:36	9:1
In situ Parameters									
Water Temperature (°C)	5.47		10.00		14.80	1	20.29	19.47	13.9
Dissolved Oxygen (mg/L)	10.73		10.70		8.48		7.28	8.85	8.6
Specific Conductance (µmhos/cm)	69		61		83		121	120	12
pH Turbidity (NTU)	7.23		7.59 <0.1		7.56 1.7		8.05 4.4	8.38	7.8
Depth (M)	1.0		1.0		1.0		1.0	1.0	1.
Analytical Parameters									
Analytical Parameters									
Total Coliform (MPN/100 mL)	500		NS		NS		NS	NS	>160
Fecal Coliform (MPN/100 mL)	11		NS		NS		NS	NS	28
Total Metals:									
Arsenic (μg/L)		DNQ	NS		NS		NS	NS	0.4
Barium (mg/L)	0.0065		NS		NS		NS	NS	0.007
Cadmium (µg/L)	<0.002		NS NS		NS NS		NS NS	NS NS	<0.00
Copper (μg/L) Lead (μg/L)	0.309		NS NS		NS NS		NS NS	NS NS	<0.00
Manganese (μg/L)	4.61		NS		NS		NS	NS	9.1
Silver (μg/L)	< 0.008		NS		NS		NS	NS	< 0.00
Zinc (µg/L)	0.4		NS		NS		NS	NS	2.9
Dissolved Metals:								+	
Arsenic (µg/L)	<0.30	DNQ	NS		NS		NS	NS	0.4
Barium (mg/L)	0.0056		NS		NS		NS	NS	0.006
Cadmium (µg/L)	< 0.002		NS		NS		NS	NS	< 0.00
Copper (µg/L)	0.275		NS		NS		NS	NS	0.11
Iron (mg/L) Lead (μg/L)	0.021	DNQ	NS NS		NS NS		NS NS	NS NS	0.043 <0.00
Manganese (μg/L)	2.02	DitQ	NS		NS		NS	NS	3.6
Mercury (µg/L)	0.00208		NS		NS		NS	NS	0.00042
Silver (µg/L)	< 0.008		NS		NS		NS	NS	< 0.00
Zinc (µg/L)	0.24		NS		NS		NS	NS	< 0.0
Ammonia - Total (mg/L)	< 0.05		NS		NS		NS	NS	< 0.0
Total Hardness, as CaCO3 (mg/L)	28.4		NS		NS		NS	NS	59.
Chloride (mg/L)	0.43		NS		NS		NS	NS	0.5
Fluoride (mg/L) Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.24		NS NS		NS NS		NS NS	NS NS	0.029
Alkalinity - Total (mg/L)	34		NS		NS		NS	NS	5.038
Total Dissolved Solids (mg/L)	72		NS		NS		NS	NS	10
Total Suspended Solids (mg/L)	1.9		NS		NS		NS	NS	1.
Total Phosphorous (mg/L)	< 0.03		NS		NS		NS	NS	0.016
Orthophosphate (mg/L) Total Calcium (mg/L)	0.0177		NS NS	-H	NS NS		NS NS	NS NS	0.032
Total Calcium (mg/L) Total Magnesium (mg/L)	6.94 2.95		NS NS		NS NS		NS NS	NS NS	6.6
Total Sodium (mg/L)	2.53		NS		NS		NS	NS	4.4
Dissolved Calcium (mg/L)	6.68		NS		NS		NS	NS	11.3
Dissolved Magnesium (mg/L)	2.87		NS		NS		NS	NS	6.9
Dissolved Sodium (mg/L) Total Boron (mg/L)	2.52 <0.10		NS NS		NS NS		NS NS	NS NS	4.7 <0.
Cyanide (mg/L)	<0.10		NS NS		NS NS		NS NS	NS NS	<0.005
Molybdenum (mg/L)	<0.0050		NS		NS		NS	NS	<0.005
PCBs					276		NG	1	
Aroclor 1016 (µg/L)	<1.0 <1.0		NS NS		NS NS		NS NS	NS NS	<0. <0.
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0		NS NS		NS NS		NS NS	NS NS	<0.
Aroclor 1232 (µg/L) Aroclor 1242 (µg/L)	<1.0		NS		NS		NS	NS	<0.
Aroclor 1248 (µg/L)	<1.0		NS		NS		NS	NS	<0.
Aroclor 1254 (µg/L)	<1.0		NS		NS		NS	NS	<0.
Arcelor 1268 (ug/L)	<1.0		NS NS	-H	NS		NS NS	NS NS	<0. <0.
Aroclor 1268 (μg/L)	<1.0		NS		NS		NS	NS	<0.
J = Estimated concentration below the rep	orting limit (SL) and	shove the metho	nd detection li	mit (MDI) the MDI	is hased on a	statistical	
calculation, the RL is normally set to 5 to					mi (MDL	, the MDL	is vascu oii a	statistical	
			(Marine Pollution					1 1	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	March	Flag			es Criteria (USEPA) ¹	Am	bient Water (Recommended ² Quality Criteria	Cal Dept. Health (CDPH) 3		EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	nwater Aquation	c Life Protection	Freshy	water Aquation	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters	8:00		CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (μmhos/cm) pH (Standard Units) Turbidity (NTU)	5.47 10.73 69 7.23 3.7							6.5-9.0		900			>7 6.5-8.5		
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L)	<0.30 0.00650 <0.002 0.30900 0.03200 4.61000 <0.008 0.40000 <0.30 <0.002 0.27500 <0.01 2.08E-03 <0.008 0.24000	DNQ	0.9163 3.1819 0.6408 41.2395 150 0.8812 3.0547 0.6244 40.6621	1.0920 4.2758 16.4439 41.2395 340 1.0884 4.1048 16.0233	0.4657 0.39585	0.10649 3.1819 0.6408 41.2395 150 0.10241 3.0547 0.6244 0.77 40.6621	0.59330 4.2758 16.4439 41.2395 340 0.5913 4.1048 16.0233 1.40 40.3322	0.4342 0.36908	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L)	11 <0.05 28.4 0.4 0.2 0.0 33.9					5.30 230 ≥ 20	19.06 860		2 10	250	4 10	250 2	200/400		
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	72.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	May	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:18														
In situ Parameters															
Water Temperature (°C)	10.00														
Dissolved Oxygen (mg/L)	10.70												>7		
Specific Conductance (mmhos/cm)	61									900					
pH (Standard Units)	7.59							6.5-9.0					6.5-8.5		
Turbidity (NTU)	< 0.1									5					
•															

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	June	Flag	California '	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:52														
In situ Parameters															
Water Temperature (°C)	14.80														
Dissolved Oxygen (mg/L)	8.48												>7		
Specific Conductance (mmhos/cm)	83									900					
pH (Standard Units)	7.56							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.7									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CCF1 (Cow Creek Forebay)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:16														
In situ Parameters															
Water Temperature (°C)	20.29														
Dissolved Oxygen (mg/L)	7.28												>7		
Specific Conductance (mmhos/cm)	121									900					
pH (Standard Units)	8.05							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.4									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CCF1 (Cow Creek Forebay)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquation	Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	later Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	17:36														
In situ Parameters															
Water Temperature (°C)	19.47														
Dissolved Oxygen (mg/L)	8.85												>7		
Specific Conductance (mmhos/cm)	120									900					
pH (Standard Units)	8.38							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CCF1 (Cow Creek Forebay)	October	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept.		USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
		Tiug		hwater Aquatio	Life Protection			Life Protection	ricaiui (Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:10														
In situ Parameters															
Water Temperature (°C)	13.90														
Dissolved Oxygen (mg/L)	8.60												>7		
Specific Conductance (mmhos/cm)	128									900					
pH (Standard Units)	7.82							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	0.42000	DNQ							50		10				
Barium (mg/L)	0.00710								1		2			1.0	
Cadmium (mg/L)	< 0.002		1.6442	2.5293		0.18489	1.26480		5		5				
Copper (mg/L)	0.05600		6.0120	8.6240		6.0120	8.6240		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	< 0.002		1.6534	42.4298		1.6534	42.4298		15		15				
Manganese (mg/L)	9.12000									50		50			
Silver (mg/L)	< 0.008				1.6762			1.5629		100					
Zinc (mg/L)	2.92000		77.5024	77.5024		77.5024	77.5024			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	0.44000	DNQ	150	340		150	340								
Cadmium (mg/L)	< 0.002		1.5300	2.4421		0.17205	1.2212								
Copper (mg/L)	0.11600		5.7716	8.2790		5.7716	8.2790								
Lead (mg/L)	< 0.002	DNQ	1.4317	36.7408		1.4317	36.7408								
Mercury (mg/L)	4.26E-04					0.77	1.40								
Silver (mg/L)	< 0.008				1.42477			1.32845							
Zinc (mg/L)	< 0.02		76.4174	75.7974		76.4174	75.7974								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰	280												200/400		
Ammonia - Total (mg/L) 5	< 0.05					3.10	7.82								
Total Hardness, as CaCO3 (mg/L)	59.8														
Chloride (mg/L) 9	0.6					230	860			250		250			
Fluoride (mg/L)	0.0								2		4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.1								10		10				
Alkalinity - Total (mg/L)	58.0					≥ 20									
Total Dissolved Solids (mg/L)	101.0									500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15		0.2			0.7	220
PCBs (mg/L)	0.0		0.014			0.014			0.5		0.5			0.00017	0.00017
Di la la Mar Mai di la Maria															

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 3. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- $10. Fecal\ Coliform\ limit\ is\ a\ monthly\ geometric\ mean\ of < 200\ /\ 100\ mL,\ and\ no\ more\ than\ 10\%\ of\ the\ monthly\ observations\ above\ 400\ /100\ mL.$

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

			2	003		
	March	May	June	July	August	O
Time	11:35	7:26	9:35	7:03	18:35	7
In situ Parameters	11.55	7.20	7.33	7.03	10.33	
Water Temperature (°C) Dissolved Oxygen (mg/L)	7.22 10.58	11.04 10.67	16.04	19.52 8.36	23.40 7.76	14
Specific Conductance (µmhos/cm)	86	76	95	134	137	
pH	7.65	7.61	7.82	8.06	8.05	7
Turbidity (NTU) Depth (M)	5.8 0.6	2.2	1.6	0.4	2.5	11
Analytical Parameters	0.0	1.0	1.0	1.0	1.0	
Total Coliform (MPN/100 mL)	900	NS	NS NS	NS	NS	
Fecal Coliform (MPN/100 mL)	23	NS	NS	NS	NS	
Total Metals: Arsenic (μg/L)	<0.30 DNQ	NS	NS	NS	NS	
Barium (mg/L)	0.0075	NS NS	NS NS	NS NS	NS	0.0
Cadmium (µg/L)	< 0.002	NS	NS	NS	NS	<0.
Copper (µg/L)	0.478 0.057	NS NS	NS NS	NS NS	NS NS	0.
Lead (μg/L) Manganese (μg/L)	6.66	NS NS	NS NS	NS NS	NS NS	0.
Silver (μg/L)	< 0.008	NS	NS	NS	NS	<0.
Zinc (µg/L)	0.99	NS	NS	NS	NS	<(
Dissolved Metals:						
Arsenic (µg/L)	<0.30 DNQ	NS	NS	NS	NS NS	(
Barium (mg/L) Cadmium (µg/L)	0.0059 <0.002	NS NS	NS NS	NS NS	NS NS	0.0
Copper (µg/L)	0.248	NS	NS	NS	NS	0.
Iron (mg/L)	0.033	NS	NS	NS	NS	0.0
Lead (μg/L) Manganese (μg/L)	<0.002 1.15	NS NS	NS NS	NS NS	NS NS	<0.
Mercury (μg/L)	0.00201	NS	NS	NS	NS	0.000
Silver (μg/L)	< 0.008	NS	NS	NS	NS	(
Zinc (μg/L)	0.15	NS	NS	NS	NS	<0.
Ammonia - Total (mg/L)	< 0.05	NS	NS	NS	NS	<(
Total Hardness, as CaCO3 (mg/L)	35.3	NS	NS	NS	NS	(
Chloride (mg/L) Fluoride (mg/L)	0.51 0.027	NS NS	NS NS	NS NS	NS NS	0.
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0549	NS	NS	NS	NS	0.0
Alkalinity - Total (mg/L)	42	NS	NS	NS	NS	
Total Dissolved Solids (mg/L) Total Suspended Solids (mg/L)	69 3.5	NS NS	NS NS	NS NS	NS NS	1
Total Phosphorous (mg/L)	<0.03	NS	NS NS	NS	NS	0.0
Orthophosphate (mg/L)	0.0193	NS	NS	NS	NS	0.0
Total Calcium (mg/L) Total Magnesium (mg/L)	8.17 3.57	NS NS	NS NS	NS NS	NS NS	12
Total Sodium (mg/L)	2.96	NS NS	NS NS	NS NS	NS	++ -
Dissolved Calcium (mg/L)	7.95	NS	NS	NS	NS	12
Dissolved Magnesium (mg/L)	3.43	NS	NS NS	NS	NS	
Dissolved Sodium (mg/L) Total Boron (mg/L)	2.86 <0.10	NS NS	NS NS	NS NS	NS NS	4
Cyanide (mg/L)	< 0.0050	NS	NS	NS	NS	< 0.0
Molybdenum (mg/L)	<0.0050	NS	NS	NS	NS	<0.0
PCBs	10	375		227		
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	<u> </u>
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	NS	NS	NS	NS	*
Aroclor 1242 (µg/L)	<1.0	NS	NS	NS	NS	<
Arcelor 1248 (μg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	
Aroclor 1254 (μg/L) Aroclor 1260 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
Aroclor 1268 (μg/L)	<1.0	NS	NS	NS	NS	
J = Estimated concentration below the reportal calculation, the RL is normally set to 5 to 5.				ne MDL is based on a	statistical	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below	March	Flag	California '	Toxics Rules	Criteria (USEPA) ¹		PA National R	tecommended ²		c of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	n 30-day average)
confluence with powerhouse diversion)		Tag	Freshy	vater Aquatic	Life Protection			Life Protection	Health		Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	11:35 7.22 10.58 86 7.65 5.8		CCC	СМС	Instantaneous Max	ссс	СМС	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) Arsenic (ug/L) Barium (mg/L) Cadmium (ug/L) Copper (ug/L) Lead (ug/L) Manganese (ug/L) Silver (ug/L) Zinc (ug/L) Dissolved Metals (units of milligrams per liter) Arsenic (ug/L) Copper (ug/L) Copper (ug/L) Lead (ug/L) Mercury (ug/L) Silver (ug/L) Silver (ug/L) Zinc (ug/L)	<0.30 0.00750 <0.002 0.47800 0.05700 6.66000 <0.008 0.99000 <0.30 <0.002 2.01E-03 <0.002 0.002 0.002	DNQ	1.0869 3.8318 0.8452 49.5845 150 1.0354 3.6785 0.7968	1.3956 5.2482 21.6894 49.5845 340 1.3783 5.0383 20.4472 48.4936	0.6770 0.57543	0.12512 3.8318 0.8452 49.5845 150 0.11918 3.6785 0.7968 0.77	0.74011 5.2482 21.6894 49.5845 340 0.7309 5.0383 20.4472 1.40 48.4936	0.6312 0.53653	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L) Primary and Secondary MCL = Maximum contaminar	23 <0.05 35.3 0.5 0.0 0.1 42.0 69.0 <0.0050 0.0		0.0052 0.014	0.022		3.78 230 ≥ 20 0.0052 0.014	10.49 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below confluence with powerhouse	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
dixtoraion)			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:26														
In situ Parameters															
Water Temperature (°C)	11.04														
Dissolved Oxygen (mg/L)	10.67												>7		
Specific Conductance (mmhos/cm)	76									900					
pH (Standard Units)	7.61							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

June	Flag	California 7	Toxics Rules	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (C		USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
		Freshv	vater Aquatic	Life Protection	Freshv	ater Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
9:35														
16.04														
9.19												>7		
95									900					
7.82							6.5-9.0					6.5-8.5		
1.6									5					
	9:35 16.04 9.19 95 7.82	9:35 16.04 9.19 95 7.82	9:35 CCC 9:35 16.04 9:19 95 7.82	9:35	Freshwater Aquatic Life Protection CCC CMC Instantaneous Max 16.04 9.19 95 7.82	Freshwater Aquatic Life Protection Freshwater Freshwater Freshwa	9:35 CCC CMC Instantaneous Max CCC CMC 9:35	Freshwater Aquatic Life Protection	Preshwater Aquatic Life Protection	Freshwater Aquatic Life Protection	Freshwater Aquatic Life Protection	Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection Drinking Water Standards	Freshwater Aquatic Life Protection	Preshwater Aquatic Life Protection Freshwater Aquatic Life Protec

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC5 (South Cow Creek below confluence with powerhouse	July	Flag		Toxics Rule	s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
divorcion)			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:03														
In situ Parameters															
Water Temperature (°C)	19.52														
Dissolved Oxygen (mg/L)	8.36												>7		
Specific Conductance (mmhos/cm)	134									900					
pH (Standard Units)	8.06							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.4									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

SC5 (South Cow Creek below confluence with powerhouse	August	Flag		Γoxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (CDPH) 3	USE		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
diviousion)			Fresh	vater Aquation	c Life Protection	Freshy	water Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	18:35														
In situ Parameters															
Water Temperature (°C)	23.40														
Dissolved Oxygen (mg/L)	7.76												>7		
Specific Conductance (mmhos/cm)	137									900					
pH (Standard Units)	8.05							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.5									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC5 (South Cow Creek below confluence with powerhouse	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (CDPH) 3		EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
divorcion			Fresh	nwater Aquation	c Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
Time	7:29		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	14.27 9.54 138 7.85 0.3							6.5-9.0		900 5			>7 6.5-8.5		
Turbidity (NTO)	0.3									3					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Iotal Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Silver (mg/L)	0.45000 0.00930 <0.002 0.09300 0.002200 4.41000 <0.008 <0.02 0.48000 0.00600 0.19100 <0.002 3.99E-04 0.022000	DNQ	1.8104 6.6761 1.9327 85.9865 150 1.6753 6.4090 1.6390	2.9045 9.6800 49.5966 85.9865 340 2.7894 9.2928 42.0608	2.0697	0.20248 6.6761 1.9327 85.9865 150 0.18737 6.4090 1.6390 0.77	1.43269 9.6800 49.5966 85.9865 340 1.3759 9.2928 42.0608 1.40	1.9298 1.64031	50 I 5 I,300 I5	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Zinc (mg/L)	< 0.002		84.7827	84.0948	1.75725	84.7827	84.0948	1.04031							
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5	130 <0.05					2.99	7.41						200/400		
Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L)	67.6 0.6 0.0 0.1 65.0					230 ≥ 20	860		2 10	250	4 10	250 2			
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	109.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (4 day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

						2003		
	Marc	h	May		June	July	August	Oc
Time	11:05		10:36		9:23	7:23	18:25	7
In situ Parameters								
Water Temperature (°C)	6.79		11.00		15.45	19.28	19.93	14
Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm)	11.23 84		10.66 73		9.23	8.44	8.89 134	9
рН	7.77		7.74		7.91	8.04	8.57	7
Turbidity (NTU)	8.1		0.9		3.2	0.4	0.8	
Depth (M)	0.5		1.0		1.0	1.0	1.0	
Analytical Parameters								
Total Coliform (MPN/100 mL)	900		NS		NS	NS	NS	9
Fecal Coliform (MPN/100 mL)	22		NS		NS	NS	NS	
Total Metals:								
Arsenic (μg/L)	< 0.30	DNQ	NS		NS	NS	NS	0
Barium (mg/L)	0.0071		NS		NS	NS	NS	0.00
Cadmium (µg/L)	0.005		NS		NS	NS	NS	<0.0
Copper (μg/L) Lead (μg/L)	0.457 0.063	-	NS NS		NS NS	NS NS	NS NS	<0.0
Manganese (μg/L)	4.96		NS		NS	NS	NS	3
Silver (μg/L)	< 0.008		NS		NS	NS	NS	<0.0
Zinc (μg/L)	0.63		NS		NS	NS	NS	<(
Dissolved Metals:								
Arsenic (μg/L)		DNQ	NS		NS	NS	NS	0
Barium (mg/L) Cadmium (μg/L)	0.0059 <0.002		NS NS		NS NS	NS NS	NS NS	0.0
Copper (µg/L)	0.238		NS NS		NS	NS NS	NS	<0.
Iron (mg/L)	0.029		NS		NS	NS	NS	0.0
Lead (µg/L)		DNQ	NS		NS	NS	NS	<0.0
Manganese (μg/L)	1.11		NS		NS	NS	NS	0.000
Mercury (μg/L) Silver (μg/L)	0.002 <0.008		NS NS		NS NS	NS NS	NS NS	0.000
Zinc (µg/L)	0.18		NS		NS	NS	NS	<0.
Ammonia - Total (mg/L)	< 0.05		NS		NS	NS	NS	<(
Total Hardness, as CaCO3 (mg/L)	34.3		NS NS		NS NS	NS NS	NS NS	<(
Chloride (mg/L)	0.55		NS		NS	NS	NS	(
Fluoride (mg/L)	0.03		NS		NS	NS	NS	(
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0466		NS		NS	NS	NS	0.0
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	38 70		NS NS		NS NS	NS NS	NS NS	(
Total Suspended Solids (mg/L)	5.9		NS		NS	NS	NS	
Total Phosphorous (mg/L)	< 0.03		NS		NS	NS	NS	<0.
Orthophosphate (mg/L)	0.0189		NS		NS	NS	NS	0.0
Total Calcium (mg/L) Total Magnesium (mg/L)	8.02 3.56		NS NS		NS NS	NS NS	NS NS	12
Total Sodium (mg/L)	2.86		NS		NS	NS	NS	4
Dissolved Calcium (mg/L)	8.16		NS		NS	NS	NS	12
Dissolved Magnesium (mg/L)	3.50		NS NS		NS	NS	NS	7
Dissolved Sodium (mg/L) Total Boron (mg/L)	2.89 <0.10	-	NS NS		NS NS	NS NS	NS NS	<(
Cyanide (mg/L)	<0.0050		NS		NS	NS	NS	<0.0
Molybdenum (mg/L)	< 0.0050		NS		NS	NS	NS	<0.0
PCBs								
Aroclor 1016 (μg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0 <1.0		NS NS		NS NS	NS NS	NS NS	<
Aroclor 1232 (μg/L) Aroclor 1242 (μg/L)	<1.0		NS NS		NS NS	NS NS	NS	\ \ <
Aroclor 1248 (µg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1254 (µg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1260 (μg/L) Aroclor 1268 (μg/L)	<1.0 <1.0		NS NS		NS NS	NS NS	NS NS	<
ποσιοι 1200 (μg/L)	<1.0		GNI		CIVI	CONT	CAT	
I - Estimatedtill 1 1 1	outin = 1: 1: 2: 2	21.) 1	have the	ad data-ti- 11	mit (MDI \	the MDI :- b- 1	atatistisc1	
J = Estimated concentration below the rep calculation, the RL is normally set to 5 to					mt (MDL)	, me IVIDL is based on a	statistical	+

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria		t. of Public (CDPH) 3	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
confluence with powerhouse diversion)		Tag		water Aquati	c Life Protection			Life Protection	Health		Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	11:05 6.79 11.23 84 7.77 8.1		ссс	СМС	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L)	<0.30 0.00710 0.00500 0.45700 0.06300 4.96000 <0.008 0.63000 <0.30 <0.002 0.23800 <0.01 2.00E-03 <0.08 0.18000	DNQ DNQ DNQ	1.0627 3.7389 0.8148 48.3917 150 1.0136 3.5893 0.7716	1.3511 5.1080 20.9103 48.3917 340 1.3360 4.9037 19.8003	0.6443 0.54768	0.12248 3.7389 0.8148 48.3917 150 0.11682 3.5893 0.7716 0.77 47.7142	0.71880 5.1080 20.9103 48.3917 340 0.7107 4.9037 19.8003 1.40 47.3271	0.6008 0.51065	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L) Primary and Secondary MCL = Maximum contaminant	22 <0.05 34.3 0.6 0.0 0.0 37.9 70.0 <0.0050 0.0		0.0052 0.014	0.022		3.30 230 ≥ 20 0.0052 0.014	8.55 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
divorcion)			Fresh	water Aquati	Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	later Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:36														
In situ Parameters															
Water Temperature (°C)	11.00														
Dissolved Oxygen (mg/L)	10.66												>7		
Specific Conductance (mmhos/cm)	73									900					
pH (Standard Units)	7.74							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.9									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
divorcion)			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:23														
In situ Parameters															
Water Temperature (°C)	15.45														
Dissolved Oxygen (mg/L)	9.23												>7		
Specific Conductance (mmhos/cm)	90									900					
pH (Standard Units)	7.91							6.5-9.0					6.5-8.5		
Turbidity (NTU)	3.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC4 (South Cow Creek above confluence with powerhouse	July	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
dirensiem)			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:23														
In situ Parameters															
Water Temperature (°C)	19.28														
Dissolved Oxygen (mg/L)	8.44												>7		
Specific Conductance (mmhos/cm)	133									900					
pH (Standard Units)	8.04							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.4									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

SC4 (South Cow Creek above confluence with powerhouse	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
divorcion)			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	18:25														
In situ Parameters															
Water Temperature (°C)	19.93														
Dissolved Oxygen (mg/L)	8.89												>7		
Specific Conductance (mmhos/cm)	134									900					
pH (Standard Units)	8.57							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC4 (South Cow Creek above confluence with powerhouse	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (CDPH) 3		EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
divamion			Fresh	water Aquation	Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
Time	7:57		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	14.19 9.77 137 7.89 0.1							6.5-9.0		900			>7 6.5-8.5		
Analytical Parameters															
· ·															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L) Zinc (mg/L)	0.42000 0.00720 <0.002 0.05600 <0.002 3.04000 <0.008 <0.02 0.43000 <0.002 0.16300 <0.002 4.82E-04 <0.008 <0.002	DNQ	1.8104 6.6761 1.9327 85.9865 150 1.6753 6.4090 1.6390	2.9045 9.6800 49.5966 85.9865 340 2.7894 9.2928 42.0608	2.0697 1.75925	0.20248 6.6761 1.9327 85.9865 150 0.18737 6.4090 1.6390 0.77	1.43269 9.6800 49.5966 85.9865 340 1.3759 9.2928 42.0608 1.40 84.0948	1.9298 1.64031	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L)	80 <0.05 67.6					2.84	6.89						200/400		
Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L)	0.6 0.0 0.1 63.2					230 ≥ 20	860		2 10	250	4 10	250 2			
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	113.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

SC3 Water Quality						
	SC3 (Sc	outh Cow Creek	below diversion)			
			2	003		
	March	May	June	July	August	Octobe
	Maich	May	Julie	July	August	Octobe
Time	NS	9:30	8:07	9:12	17:17	9:48
In situ Parameters						
Water Temperature (°C)	NS	9.44	13.76	16.57	19.36	12.50
Dissolved Oxygen (mg/L)	NS	10.92	9.28	7.80	8.79	9.44
Specific Conductance (µmhos/cm)	NS	62	80	121	121	127
pH	NS	7.70	7.67	8.04	8.31	7.95
Turbidity (NTU)	NS	0.4	1.7	1.7	0.0	8.5
Depth (M)	NS	1.0	1.0	1.0	1.0	1.0
NS = Constituent not sampled for during						

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept.	of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	May	Flag		Γoxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Freshy	vater Aquatio	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	later Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:30														
In situ Parameters															
Water Temperature (°C)	9.44														
Dissolved Oxygen (mg/L)	10.92												>7		
Specific Conductance (mmhos/cm)	62									900					
pH (Standard Units)	7.70							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.4									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:07														
In situ Parameters															
Water Temperature (°C)	13.76														
Dissolved Oxygen (mg/L)	9.28												>7		
Specific Conductance (mmhos/cm)	80									900					
pH (Standard Units)	7.67							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.7									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC3 (South Cow Creek below diversion)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) ³	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Freshy	water Aquation	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:12														
In situ Parameters															
Water Temperature (°C)	16.57														
Dissolved Oxygen (mg/L)	7.80												>7		
Specific Conductance (mmhos/cm)	121									900					
pH (Standard Units)	8.04							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.7									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

SC3 (South Cow Creek below diversion)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	: Life Protection	Freshy	water Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	17:17														
In situ Parameters															
Water Temperature (°C)	19.36														
Dissolved Oxygen (mg/L)	8.79												>7		
Specific Conductance (mmhos/cm)	121									900					
pH (Standard Units)	8.31							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

SC3 (South Cow Creek below diversion)	October	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE		RWQCB 4 Basin Plan	CTR (Human Health	, ,,
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:48														
In situ Parameters															
Water Temperature (°C)	12.50														
Dissolved Oxygen (mg/L)	9.44												>7		
Specific Conductance (mmhos/cm)	127									900					
pH (Standard Units)	7.95							6.5-9.0					6.5-8.5		
Turbidity (NTU)	8.5									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

						2003		1 1
	Mana	-	Man		T	T1	A	0
	Marc	n	May		June	July	August	Oct
Time	9:45		8:50		8:20	8:42	16:49	10:
In situ Parameters								
Water Temperature (°C)	5.74		9.19		13.68	16.99	20.46	12.
Dissolved Oxygen (mg/L)	10.37		10.93		8.99	8.59	7.73	8.
Specific Conductance (µmhos/cm)	69		59		74	104	104	1
pH Turbidity (NTU)	7.55		7.52 0.1		7.69	8.01 1.8	8.17 0.2	7.
Depth (M)	1.5		1.0		1.0	1.0	1.0	
Analytical Parameters	1.0		1.0		1.0	110	110	
Anaiyiicai Farameiers								
Total Coliform (MPN/100 mL)	1,600		NS		NS	NS	NS	5
Fecal Coliform (MPN/100 mL)	50		NS		NS	NS	NS	5
Total Metals:								
Arsenic (μg/L)		DNQ	NS		NS	NS	NS	0
Barium (mg/L)	0.0055		NS		NS	NS	NS	0.00
Cadmium (µg/L)	< 0.002		NS	-H	NS	NS	NS	<0.0
Copper (μg/L) Lead (μg/L)	0.309 0.026		NS NS		NS NS	NS NS	NS NS	<0.0
Manganese (μg/L)	4.4		NS NS		NS	NS	NS	4
Silver (µg/L)	<0.008		NS		NS	NS	NS	<0.0
Zinc (µg/L)	0.4		NS		NS	NS	NS	<0
Dissolved Metals:								
Arsenic (µg/L)	<0.30	DNQ	NS		NS	NS	NS	0
Barium (mg/L)	0.0063	2110	NS		NS	NS	NS	0.00
Cadmium (μg/L)	< 0.002		NS		NS	NS	NS	<0.0
Copper (µg/L)	0.187		NS		NS	NS	NS	0
Iron (mg/L) Lead (μg/L)	0.0133 <0.002		NS NS		NS NS	NS NS	NS NS	0.0 ²
Manganese (μg/L)	1.6		NS NS		NS	NS	NS	3
Mercury (µg/L)	0.00203		NS		NS	NS	NS	0.00
Silver (µg/L)	< 0.008		NS		NS	NS	NS	<0.0
Zinc (µg/L)	0.21		NS		NS	NS	NS	<0
Ammonia - Total (mg/L)	< 0.05		NS		NS	NS	NS	<0
Total Hardness, as CaCO3 (mg/L)	27.4		NS		NS	NS	NS	5
Chloride (mg/L)	0.44		NS		NS	NS	NS	0
Fluoride (mg/L)	0.02		NS		NS	NS	NS	0
Nitrate, as NO3 (mg/L) + Nitrite (mg/L) Alkalinity - Total (mg/L)	0.0481		NS NS		NS NS	NS NS	NS NS	0.05
Total Dissolved Solids (mg/L)	67		NS		NS	NS	NS	·
Total Suspended Solids (mg/L)	2.2		NS		NS	NS	NS	<
Total Phosphorous (mg/L)	< 0.03		NS		NS	NS	NS	<0.0
Orthophosphate (mg/L)	0.0176		NS		NS	NS	NS	0.02
Total Calcium (mg/L) Total Magnesium (mg/L)	6.98 2.81		NS NS		NS NS	NS NS	NS NS	10
Total Sodium (mg/L)	2.54		NS NS		NS	NS	NS	4
Dissolved Calcium (mg/L)	6.55		NS		NS	NS	NS	10
Dissolved Magnesium (mg/L)	2.81		NS		NS	NS	NS	5
Dissolved Sodium (mg/L)	2.49		NS		NS	NS	NS	4
Total Boron (mg/L) Cyanide (mg/L)	<0.10 <0.0050		NS NS		NS NS	NS NS	NS NS	<0.00
Molybdenum (mg/L)	<0.0050		NS NS		NS NS	NS NS	NS NS	<0.00
PCBs								
Aroclor 1016 (μg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1221 (µg/L)	<1.0 <1.0		NS NS		NS NS	NS NS	NS NS	<
Aroclor 1232 (μg/L) Aroclor 1242 (μg/L)	<1.0		NS NS		NS NS	NS NS	NS NS	<
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1254 (µg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1260 (µg/L)	<1.0		NS		NS	NS	NS	<
Aroclor 1268 (μg/L)	<1.0		NS		NS	NS	NS	<
J = Estimated concentration below the re	porting limit (RL) and al	bove the meth	od detection li	mit (MDI), the MDL is based on a	statistical	
calculation, the RL is normally set to 5 to					, 2			

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	March	Flag			es Criteria (USEPA) ¹	Am	bient Water (Recommended ² Quality Criteria	Cal Dept. Health (CDPH) 3		EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
<u> </u>			Fresh	water Aquation	c Life Protection	Freshy	vater Aquation	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L)	9:45 5.74 10.37		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL	>7	(water + organism consump)	(aquatic org. consump)
Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	69 7.55 3.2							6.5-9.0		900			6.5-8.5		
Analytical Parameters															
Total Metals (units of milligrams per liter) ⁷ Arsenic (µg/L) Barium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) ⁶ Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.30 0.00550 <0.002 0.30900 0.02600 4.40000 <0.008 0.40000 <0.30 <0.002 0.18700 <0.002 2.03E-03 <0.008 0.21000	DNQ	0.8909 3.0859 0.6122 40.0057 150 0.8581 2.9625 0.5997	1.0487 4.1338 15.7104 40.0057 340 1.0468 3.9684 15.3906 39.1256	0.4379 0.37218	0.10370 3.0859 0.6122 40.0057 150 0.09988 2.9625 0.5997 0.77 39.4457	0.57207 4.1338 15.7104 40.0057 340 0.5710 3.9684 15.3906 1.40 39.1256	0.4083 0.34702	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L)	50 <0.05 27.4 0.4 0.0 0.0 32.4					4.17 230 ≥ 20	12.31 860		2 10	250	4 10	250 2	200/400		
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L) Primary and Secondary MCL - Maximum contamina	67.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:50														
In situ Parameters															
Water Temperature (°C)	9.19														
Dissolved Oxygen (mg/L)	10.93												>7		
Specific Conductance (mmhos/cm)	59									900					
pH (Standard Units)	7.52							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	June	Flag		Toxics Rule	s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:20														
In situ Parameters															
Water Temperature (°C)	13.68														
Dissolved Oxygen (mg/L)	8.99												>7		
Specific Conductance (mmhos/cm)	74									900					
pH (Standard Units)	7.69							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

SC1 (South Cow Creek above diversion)	July	Flag		Toxics Rule	es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, ,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:42														
In situ Parameters															
Water Temperature (°C)	16.99														
Dissolved Oxygen (mg/L)	8.59												>7		
Specific Conductance (mmhos/cm)	104									900					
pH (Standard Units)	8.01							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.8									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

SC1 (South Cow Creek above diversion)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept.	of Public CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquation	: Life Protection	Freshv	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	16:49														
In situ Parameters															
Water Temperature (°C)	20.46														
Dissolved Oxygen (mg/L)	7.73												>7		
Specific Conductance (mmhos/cm)	104									900					
pH (Standard Units)	8.17							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

SC1 (South Cow Creek above diversion)	October	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept Health (of Public	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
ui veision)		Ŭ	Fresh	nwater Aquati	c Life Protection	Fresh	water Aquation	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	10:00 12.58 8.77 110 7.88 5.7		CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L)	0.56000 0.00760 <0.002 0.06800 <0.002 4.91000 <0.002 0.54000 <0.002 0.18000 <0.002 3.00E-04 <0.008 <0.002	DNQ	1.4510 5.2475 1.3501 67.7237 150 1.3599 5.0376 1.2004	2.1136 7.4229 34.6471 67.7237 340 2.0548 7.1260 30.8053	1.2747 1.08353	0.16432 5.2475 1.3501 67.7237 150 0.15400 5.0376 1.2004 0.77	1.07583 7.4229 34.6471 67.7237 340 1.0459 7.1260 30.8053 1.40 66.2338	1.1886 1.01027	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) 10 Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L)	500 <0.05 51.0 0.4 0.0 0.1 48.1					2.87 230 ≥ 20	7.02 860		2 10	250	4 10	250 2	200/400		
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L) Primus and Secondary MCL Maximum contains	92.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 3. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

MC2 Water Quality						
		MC2 (Mill C	reek)			
			2	003		
	March	May	June	July	August	Octobe
	1/141011	1710)	- Cane	- Cary	Tagast	301350
Time	NS	9:12	8:35	8:55	16:59	10:43
In situ Parameters						
Water Temperature (°C)	NS	12.69	14.36	15.47	17.36	12.64
Dissolved Oxygen (mg/L)	NS	9.80	9.01	8.82	9.83	8.47
Specific Conductance (µmhos/cm)	NS	138	159	168	161	167
pH	NS	7.81	7.98	8.27	8.42	7.94
Turbidity (NTU)	NS	4.4	0.9	0.5	0.0	4.2
Depth (M)	NS	1.0	1.0	1.0	1.0	0.1
NS = Constituent not sampled for during r	nonitoring program					

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	March	Flag	California	Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept Health (of Public CDPH) 3	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresl	nwater Aquati	c Life Protection	Fresh	water Aquat	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:12														
In situ Parameters															
Water Temperature (°C)	12.69														
Dissolved Oxygen (mg/L)	9.80												>7		
Specific Conductance (mmhos/cm)	138									900					
pH (Standard Units)	7.81							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.4									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	June	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	: Life Protection	Freshy	water Aquati	c Life Protection		Drinking V	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	ССС	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:35														
In situ Parameters															
Water Temperature (°C)	14.36														
Dissolved Oxygen (mg/L)	9.01												>7		
Specific Conductance (mmhos/cm)	159									900					
pH (Standard Units)	7.98							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.9									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC2 (Mill Creek)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	: Life Protection	Fresh	vater Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:55														
In situ Parameters															
Water Temperature (°C)	15.47														
Dissolved Oxygen (mg/L)	8.82												>7		
Specific Conductance (mmhos/cm)	168									900					
pH (Standard Units)	8.27							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.5									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

MC2 (Mill Creek)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	: Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	16:59														
In situ Parameters															
Water Temperature (°C)	17.36														
Dissolved Oxygen (mg/L)	9.83												>7		
Specific Conductance (mmhos/cm)	161									900					
pH (Standard Units)	8.42							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

MC2 (Mill Creek)	October	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) ³	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:43														
In situ Parameters															
Water Temperature (°C)	12.64														
Dissolved Oxygen (mg/L)	8.47												>7		
Specific Conductance (mmhos/cm)	167									900					
pH (Standard Units)	7.94							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.2									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

	MC	1 (Mill Creek abo	ove diversion)	1	1	
			2	.003		
	March	May	June	July	August	Oct
+	March	May	June	July	August	1 00
Time	9:15	9:05	8:42	9:03	17:08	10:
In situ Parameters						
W . T . (9C)	6.94	12.55	14.10	15.20	17.22	10
Water Temperature (°C) Dissolved Oxygen (mg/L)	6.84	12.55 9.70	14.19	15.30 8.71	17.33	12
Specific Conductance (µmhos/cm)	120	138	159	168	160	9
рН	7.27	7.61	7.99	8.25	8.37	8
Turbidity (NTU)	5.5	2.2	7.6	6.2	0.0	
Depth (M)	0.9	1.0	1.0	1.0	1.0	
Analytical Parameters						+
1 -						
Total Coliform (MPN/100 mL)	>1,600	NS	NS	NS	NS	Ģ
Fecal Coliform (MPN/100 mL)	900	NS	NS	NS	NS	
Total Metals:						
Arsenic (µg/L)	< 0.10	NS	NS	NS	NS	0
Barium (mg/L)	0.0072	NS	NS	NS	NS	0.00
Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<0.0
Copper (µg/L)	0.706	NS	NS	NS	NS NS	0
Lead (μg/L) Manganese (μg/L)	0.039 4.46	NS NS	NS NS	NS NS	NS NS	0.0
Silver (µg/L)	<0.008	NS NS	NS NS	NS NS	NS NS	<0.0
Zinc (µg/L)	0.46	NS	NS	NS	NS	<0.
Dissolved Metals:						
Arsenic (μg/L)	<0.10	NS	NS	NS	NS	0
Barium (mg/L)	0.0066 <0.002	NS NS	NS NS	NS NS	NS NS	0.00
Cadmium (µg/L) Copper (µg/L)	0.451	NS NS	NS NS	NS NS	NS NS	<0.0
Iron (mg/L)	0.094	NS	NS	NS	NS	0.0
Lead (μg/L)	< 0.002	NS	NS	NS	NS	<0.0
Manganese (μg/L)	1.96	NS	NS	NS	NS	1
Mercury (μg/L)	0.00174	NS	NS	NS	NS	0.0003
Silver (μg/L)	<0.008	NS	NS	NS	NS	<0.0
Zinc (μg/L)	0.2	NS	NS	NS	NS	<0
Ammonia - Total (mg/L)	< 0.05	NS	NS	NS	NS	<0
Total Hardness, as CaCO3 (mg/L)	53.9	NS	NS	NS	NS	8
Chloride (mg/L)	0.86	NS	NS	NS	NS	0
Fluoride (mg/L)	0.03	NS	NS	NS	NS	0.0
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0734	NS NS	NS NS	NS NS	NS NS	0.1
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	61	NS NS	NS NS	NS NS	NS NS	8
Total Suspended Solids (mg/L)	1.6	NS	NS	NS	NS	1
Total Phosphorous (mg/L)	<0.03	NS	NS	NS	NS	0.02
Orthophosphate (mg/L)	0.0263	NS	NS	NS	NS	0.03
Total Calcium (mg/L)	10.60	NS	NS	NS	NS	13
Total Magnesium (mg/L)	7.58	NS	NS	NS	NS	10
Total Sodium (mg/L)	3.01	NS	NS	NS	NS	4
Dissolved Calcium (mg/L) Dissolved Magnesium (mg/L)	10.6 7.56	NS NS	NS NS	NS NS	NS NS	13
Dissolved Sodium (mg/L)	3.02	NS NS	NS NS	NS NS	NS NS	4
Total Boron (mg/L)	<0.10	NS	NS	NS	NS	<
Cyanide (mg/L)	<0.0050	NS	NS	NS	NS	<0.0
Molybdenum (mg/L)	<0.0050	NS	NS	NS	NS	<0.0
PCBs	4.0	NG	NG	NG	210	
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	<
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	<
Aroclor 1242 (μg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1248 (µg/L)	<1.0	NS	NS	NS	NS	<
Aroclor 1254 (μg/L)	<1.0	NS	NS	NS	NS	<
Aroclor 1260 (µg/L)	<1.0	NS	NS	NS	NS	<
Aroclor 1268 (μg/L)	<1.0	NS	NS	NS	NS	<
	continualization (DI)	above the second of the	tention limit (MIDI) 3	no MDI :- ! !	statistic-1	
	porting limit (RL) and	apove the method det	ection iimit (MDL), tl	ne IVII II. 1s based on a	siansucal	1 1
J = Estimated concentration below the recalculation, the RL is normally set to 5 to				ic MBE is oased on a	Statistical	++

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	March	Flag	California	Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria		of Public	US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquatio	c Life Protection			c Life Protection			Vater Standards	1	Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	9:15 6.84 10.98 120 7.27 5.5		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.10 0.00720 <0.002 0.70600 0.03900 4.46000 <0.008 0.46000 <0.10 <0.002 0.45100 <0.002 1.74E-03 <0.008 0.20000		1.5154 5.5014 1.4486 70.9727 150 1.4167 5.2813 1.2763	2.2497 7.8199 37.1743 70.9727 340 2.1819 7.5071 32.7527 69.4113	1.4020 1.19166	0.17120 5.5014 1.4486 70.9727 150 0.16005 5.2813 1.2763 0.77 69.9791	1.13805 7.8199 37.1743 70.9727 340 1.1037 7.5071 32.7527 1.40 69.4113	1.3072 1.11109	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (μg/L)	900 <0.05 53.9 0.9 0.0 0.1 61.0 99.0 <0.0050 0.0		0.0052 0.014	0.022		5.17 230 ≥ 20 0.0052 0.014	18.17 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	May	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	, ,,
			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:05														
In situ Parameters															
Water Temperature (°C)	12.55														
Dissolved Oxygen (mg/L)	9.70												>7		
Specific Conductance (mmhos/cm)	138									900					
pH (Standard Units)	7.61							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.2									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	June	Flag	California '	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	: Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:42														
In situ Parameters															
Water Temperature (°C)	14.19														
Dissolved Oxygen (mg/L)	8.81												>7		
Specific Conductance (mmhos/cm)	159									900					
pH (Standard Units)	7.99							6.5-9.0					6.5-8.5		
Turbidity (NTU)	7.6									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

MC1 (Mill Creek above diversion)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept.	of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:03														
In situ Parameters															
Water Temperature (°C)	15.30														
Dissolved Oxygen (mg/L)	8.71												>7		
Specific Conductance (mmhos/cm)	168									900					
pH (Standard Units)	8.25							6.5-9.0					6.5-8.5		
Turbidity (NTU)	6.2									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

August	Flag		Γoxics Rule	s Criteria (USEPA) 1						USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
		Freshy	vater Aquatio	Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	later Standards		Objectives	Sources of Drinking water	Other waters
		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
17:08														
17.33														
9.79												>7		
160									900					
8.37							6.5-9.0					6.5-8.5		
0.0									5					
	17:08 17.33 9.79 160 8.37	17:08 17:33 9.79 160 8.37	August Flag Freshv 17:08 17:33 9.79 160 8.37	August Flag Freshwater Aquatic 17:08	Freshwater Aquatic Life Protection CCC CMC Instantaneous Max 17:08 17:33 9.79 160 8.37	August Flag Freshwater Aquatic Life Protection Amil 17:08 CCC CMC Instantaneous Max CCC 17:33 9.79 160 8.37 CCC CMC Instantaneous Max CCC	August Flag Ambient Water Freshwater Aquatic Life Protection Ambient Water Freshwater Aquatic Life Protection 17:08 CCC CMC Instantaneous Max CCC CMC 17:33 9.79 160 8.37 CCC CMC	August Flag Freshwater Aquatic Life Protection CCC CMC Instantaneous Max 17:08 17:33 9.79 160 8.37 Ambient Water Quality Criteria Freshwater Aquatic Life Protection CCC CMC Instantaneous Max CCC CMC Instantaneous Max 6.5-9.0	August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Health (Compared on the protection 17:08 CCC CMC Instantaneous Max CCC CMC Instantaneous Max 1° MCL 17:08 17:08 10:00 <td>August Flag Freshwater Aquatic Life Protection CCC CMC Instantaneous Max 1° MCL 2° MCL 17.08 17.33 9.79 160 8.37 Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking W Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking W 1° MCL 2° MCL 900 900 6.5-9.0</td> <td>August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection CCC CMC Instantaneous Max CCC CMC Instantaneous Max 1° MCL 2° MCL 1° MCL 17.08 17.33 9.79 160 8.37</td> <td>August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking Water Standards CCC CMC Instantaneous Max CCC CMC Instantaneous Max P3 MCL 2° MCL 1° MCL 2° MCL 17:08 17:33 9.79 160 8.37</td> <td>August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Health (CDPH) 3 USEPA Basin Plan Objectives 17:08 CCC CMC Instantaneous Max 1° MCL 2° MCL 1° MCL</td> <td>August Flag Freshwater Aquatic Life Protection Fres</td>	August Flag Freshwater Aquatic Life Protection CCC CMC Instantaneous Max 1° MCL 2° MCL 17.08 17.33 9.79 160 8.37 Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking W Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking W 1° MCL 2° MCL 900 900 6.5-9.0	August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection CCC CMC Instantaneous Max CCC CMC Instantaneous Max 1° MCL 2° MCL 1° MCL 17.08 17.33 9.79 160 8.37	August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking Water Standards CCC CMC Instantaneous Max CCC CMC Instantaneous Max P3 MCL 2° MCL 1° MCL 2° MCL 17:08 17:33 9.79 160 8.37	August Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Health (CDPH) 3 USEPA Basin Plan Objectives 17:08 CCC CMC Instantaneous Max 1° MCL 2° MCL 1° MCL	August Flag Freshwater Aquatic Life Protection Fres

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

MC1 (Mill Creek above diversion)	October	Flag		Toxics Rules	Criteria (USEPA) 1		A National Renbient Water Qu			t. of Public (CDPH) ³		EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquatic	Life Protection	Fresh	water Aquatic I	ife Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:23														
In situ Parameters															
Water Temperature (°C)	12.57														
Dissolved Oxygen (mg/L)	9.59												>7		
Specific Conductance (mmhos/cm)	166									900					
pH (Standard Units)	8.10							6.5-9.0					6.5-8.5		
Turbidity (NTU)	4.5									5					
,															
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	0.13000								50		10				
Barium (mg/L)	0.00330								1		2			1.0	
Cadmium (mg/L)	< 0.002		2.2070	3.8607		0.24409	1.85159		5		5				
Copper (mg/L)	0.13000		8.2823	12.2776		8.2823	12.2776		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	0.02100		2.6647	68.3814		2.6647	68.3814		15		15				
Manganese (mg/L)	7.21000									50		50			
Silver (mg/L)	< 0.008				3.1943			2.9783		100					
Zinc (mg/L)	< 0.02		106.4807	106.4807		106.4807	106.4807			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	0.15000		150	340		150	340								
Cadmium (mg/L)	< 0.002		2.0190	3.6670		0.22330	1.7587								
Copper (mg/L)	0.09500		7.9510	11.7865		7.9510	11.7865								
Lead (mg/L)	< 0.002		2.1619	55.4774		2.1619	55.4774								
Mercury (mg/L)	3.09E-04		2.1019	33.4774		0.77	1.40								
Silver (mg/L)	< 0.008				2.71514	0.77	1.40	2.53158							
Zinc (mg/L)	< 0.003		104.9900	104.1381	2.71314	104.9900	104.1381	2.55156							
Zine (mg/L)	(0.02		104.7700	104.1501		104.7700	104.1301								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰	30												200/400		
Ammonia - Total (mg/L) 5	< 0.05					2.10	4.64						200,100		
Total Hardness, as CaCO3 (mg/L)	87.0														
Chloride (mg/L) 9	0.8					230	860			250	1	250			
Fluoride (mg/L)	0.0								2		4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.1								10		10				
Alkalinity - Total (mg/L)	80.5					≥ 20									
Total Dissolved Solids (mg/L)	136.0					-				500	1	500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15		0.2			0.7	220
PCBs (mg/L)	0.0		0.014			0.014			0.5		0.5			0.00017	0.00017
, , ,											1				
)		•	· 160						•						

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

			2	003		
	March	May	June	July	August	0
Time	13:15	13:35	11:38	11:32	8:58	13
Time	13.13	13.33	11.36	11.32	6.56	1.
In situ Parameters						
Water Temperature (°C)	4.40	8.89	11.00	12.86	11.48	
Dissolved Oxygen (mg/L)	10.89	10.50	9.65	8.95	9.69	
Specific Conductance (µmhos/cm)	56	54	60	94	96	
pH Turbidity (NTU)	7.95	7.73 0.6	7.84	8.32 1.3	8.16 0.0	11
Depth (M)	0.4	1.0	1.0	1.0	1.0	++
Analytical Parameters						+
Total Coliform (MPN/100 mL)	130	NS	NS	NS	NS	
Fecal Coliform (MPN/100 mL)	<2	NS	NS	NS	NS	$\pm \pm -$
Total Metals:						
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	<
Barium (mg/L) Cadmium (μg/L)	0.0028 <0.002	NS NS	NS NS	NS NS	NS NS	0.0
Copper (µg/L)	0.158	NS	NS	NS	NS	<0
Lead (μg/L)	0.022	NS	NS	NS	NS	0
Manganese (μg/L)	2.08	NS	NS	NS	NS	
Silver (μg/L)	<0.008 0.27	NS NS	NS NS	NS NS	NS NS	(
Zinc (μg/L)	0.27	INS	IND	INS	INS	++-
Dissolved Metals:						
Arsenic (μg/L)	<0.10	NS	NS	NS	NS	<
Barium (mg/L) Cadmium (μg/L)	0.0019 <0.002	NS NS	NS NS	NS NS	NS NS	0.
Copper (µg/L)	0.002	NS	NS	NS	NS	
Iron (mg/L)	0.014	NS	NS	NS	NS	0.
Lead (μg/L)	< 0.002	NS	NS	NS	NS	<(
Manganese (μg/L) Mercury (μg/L)	0.75 0.00175	NS NS	NS NS	NS NS	NS NS	0.00
Silver (μg/L)	<0.008	NS	NS NS	NS NS	NS	<0.000
Zinc (µg/L)	0.16	NS	NS	NS	NS	<
Assessment Tetal (see II)	40.05	NIC	NC	NIC	NC	
Ammonia - Total (mg/L) Total Hardness, as CaCO3 (mg/L)	<0.05 24.5	NS NS	NS NS	NS NS	NS NS	<
Chloride (mg/L)	0.28	NS	NS	NS	NS	
Fluoride (mg/L)	0.019 J	NS	NS	NS	NS	C
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0555	NS	NS	NS	NS	0.
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	27	NS NS	NS NS	NS NS	NS NS	+-
Total Suspended Solids (mg/L)	1.5	NS	NS	NS	NS	\Box
Total Phosphorous (mg/L)	<0.03	NS	NS	NS	NS	<0
Orthophosphate (mg/L)	0.0134	NS	NS	NS	NS	0.
Total Calcium (mg/L) Total Magnesium (mg/L)	5.57 2.60	NS NS	NS NS	NS NS	NS NS	+
Total Sodium (mg/L)	1.82	NS	NS	NS	NS	
Dissolved Calcium (mg/L)	5.44	NS	NS	NS	NS	
Dissolved Magnesium (mg/L)	2.56	NS	NS	NS	NS NS	
Dissolved Sodium (mg/L) Total Boron (mg/L)	1.79 <0.10	NS NS	NS NS	NS NS	NS NS	<
Cyanide (mg/L)	<0.0050	NS	NS	NS	NS	<0.
Molybdenum (mg/L)	<0.0050	NS	NS	NS	NS	<0.
PCBs	1.0	NG	276	NG	276	
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	+
Aroclor 1242 (μg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1248 (µg/L)	<1.0	NS	NS	NS	NS	
Arcelor 1254 (µg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	+
Aroclor 1260 (μg/L) Aroclor 1268 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
						+
J = Estimated concentration below the re				ne MDL is based on a	statistical	
calculation, the RL is normally set to 5 to	10 times the MDL by		tory. udies Laboratory). Va			

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept Health (of Public CDPH) 3	US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	ıwater Aquati	c Life Protection	Fresh	hwater Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Fime In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) H (Standard Units) Furbidity (NTU)	13:15 4.40 10.89 56 7.95 3.4		ccc	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consum
Analytical Parameters Total Metals (units of milligrams per liter) Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) Arsenic (µg/L) Copper (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L)	<0.10 0.00280 <0.002 0.15800 0.02200 2.08000 <0.008 0.27000 <0.10 <0.002 0.07700 <0.002 1.75E-03 <0.008 0.16000 0.16000		0.8160 2.8046 0.5309 36.3879 150 0.7897 2.6924 0.5288	0.9244 3.7202 13.6251 36.3879 340 0.9270 3.5714 13.5698	0.3612 0.30703	0.09545 2.8046 0.5309 36.3879 150 0.09239 2.6924 0.5288 0.77	0.51057 3.7202 13.6251 36.3879 340 0.5120 3.5714 13.5698 1.40 35.5873	0.3368 0.28628	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	<2 <0.05 24.5 0.3 0.0 0.1 27.3 72.0 <0.0050 0.0	J	0.0052 0.014	0.022		2.61 230 ≥ 20 0.0052 0.014	6.17 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:35														
In situ Parameters															
Water Temperature (°C)	8.89														
Dissolved Oxygen (mg/L)	10.50												>7		
Specific Conductance (mmhos/cm)	54									900					
pH (Standard Units)	7.73							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.6									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, , , , , , , , , , , , , , , , , , ,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:38														
In situ Parameters															
Water Temperature (°C)	11.00														
Dissolved Oxygen (mg/L)	9.65												>7		
Specific Conductance (mmhos/cm)	60									900					
pH (Standard Units)	7.84							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.8									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC4 (Old Cow Creek below Kilrac Powerhouse)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, , , , , , , , , , , , , , , , , , ,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:32														
In situ Parameters															
Water Temperature (°C)	12.86														
Dissolved Oxygen (mg/L)	8.95												>7		
Specific Conductance (mmhos/cm)	94									900					
pH (Standard Units)	8.32							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.3									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

OC4 (Old Cow Creek below Kilrac Powerhouse)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:58														
In situ Parameters															
Water Temperature (°C)	11.48														
Dissolved Oxygen (mg/L)	9.69												>7		
Specific Conductance (mmhos/cm)	96									900					
pH (Standard Units)	8.16							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC4 (Old Cow Creek below Kilrac Powerhouse)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	nwater Aquation	c Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:20														
In situ Parameters															
Water Temperature (°C)	9.88														
Dissolved Oxygen (mg/L)	9.88												>7		
Specific Conductance (mmhos/cm)	102									900					
pH (Standard Units)	8.24							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.2									5					
* * *															
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	< 0.10								50		10				
Barium (mg/L)	0.00280								1		2			1.0	
Cadmium (mg/L)	< 0.002		1.4286	2.0669		0.16193	1.05439		5		5				
Copper (mg/L)	< 0.003		5.1594	7.2857		5.1594	7.2857		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	0.01500		1.3165	33.7846		1.3165	33.7846		15		15				
Manganese (mg/L)	2.37000									50		50			
Silver (mg/L)	0.01200				1.2321			1.1488		100					
Zinc (mg/L)	< 0.02		66.5968	66.5968		66.5968	66.5968			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	< 0.10		150	340		150	340								
Cadmium (mg/L)	0.00300		1.3401	2.0111		0.15189	1.0259								
Copper (mg/L)	0.03700		4.9530	6.9942		4.9530	6,9942								
Lead (mg/L)	< 0.002		1.1744	30.1359		1.1744	30.1359								
Mercury (mg/L)	3.19E-04		-127			0.77	1.40								
Silver (mg/L)	< 0.008				1.04724			0.97644							
Zinc (mg/L)	< 0.02		65.6645	65.1317		65.6645	65.1317								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰	13												200/400		
Ammonia - Total (mg/L) 5	< 0.05					1.68	3.54						200/400		
Total Hardness, as CaCO3 (mg/L)	<0.05 50.0					1.00	3.34								
Chloride (mg/L) 9	0.3					230	860			250		250			
Fluoride (mg/L)	0.0	ı				230	000		2	250	4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.0	,							10		10	2			
Alkalinity - Total (mg/L)	46.5					≥ 20			10		10				
Total Dissolved Solids (mg/L)	77.0					= 20				500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15	200	0.2	500		0.7	220
PCBs (mg/L)	0.0		0.0032	0.022		0.0032	0.022		0.15		0.5			0.00017	0.00017
i CDs (iiig/L)	0.0		0.014			0.014			0.5		0.5			0.00017	0.00017

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

		KF1 (Kilrac Fo	orebay)			
			2	003		
	3.5	7.	-			
-	March	May	June	July	August	O
Time	14:00	11:45	10:30	10:31	7:40	12
	100	111.10	10.50	10.01	71.10	
In situ Parameters						
	1.51	0.50	11.00	42.02		Н.,
Water Temperature (°C) Dissolved Oxygen (mg/L)	4.51 10.77	8.50 11.03	11.99 8.68	13.82 8.49	14.14 8.76	11
Specific Conductance (µmhos/cm)	54	52	59	92	93	
рН	8.00	7.77	7.90	8.44	8.68	1 :
Turbidity (NTU)	1.5	< 0.1	0.9	0.8	2.4	
Depth (M)	1.1	1.0	1.0	1.0	1.0	11
Analytical Parameters						
Total Coliform (MPN/100 mL)	80	NS	NS	NS	NS	
Fecal Coliform (MPN/100 mL)	<2	NS NS	NS NS	NS NS	NS	++
	\\\ 2	INS	145	No	145	
Total Metals:	0.10	375	375	375	1	
Arsenic (µg/L) Barium (mg/L)	<0.10 0.0019	NS NS	NS NS	NS NS	NS NS	0.0
Barium (mg/L) Cadmium (μg/L)	0.0019 <0.002	NS NS	NS NS	NS NS	NS NS	<0.0
Copper (µg/L)	0.088	NS	NS	NS	NS	<0.
Lead (µg/L)	<0.01 DNQ	NS	NS	NS	NS	0.
Manganese (μg/L)	1.44	NS	NS	NS	NS	1
Silver (µg/L)	<0.008	NS	NS	NS	NS	<0.
Zinc (μg/L)	0.19	NS	NS	NS	NS	<(
Dissolved Metals:						
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	<00
Barium (mg/L)	0.0015	NS	NS	NS	NS	0.0
Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<0.
Copper (µg/L) Iron (mg/L)	0.088 0.0064	NS NS	NS NS	NS NS	NS NS	0. <0.
Lead (μg/L)	<0.004	NS NS	NS NS	NS NS	NS NS	<0.
Manganese (μg/L)	0.84	NS	NS	NS	NS	
Mercury (μg/L)	0.00137	NS	NS	NS	NS	0.000
Silver (µg/L)	<0.008	NS	NS	NS	NS	<0.
Zinc (µg/L)	0.19	NS	NS	NS	NS	<(
Ammonia - Total (mg/L)	< 0.05	NS	NS	NS	NS	<
Total Hardness, as CaCO3 (mg/L)	22.5	NS	NS	NS	NS	1
Chloride (mg/L)	0.27	NS	NS	NS	NS	(
Fluoride (mg/L)	0.02 J	NS	NS	NS	NS	(
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0453	NS NS	NS NS	NS NS	NS NS	0.0
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	28	NS NS	NS NS	NS NS	NS NS	++
Total Suspended Solids (mg/L)	<1.0	NS	NS	NS	NS	
Total Phosphorous (mg/L)	< 0.03	NS	NS	NS	NS	<0.
Orthophosphate (mg/L)	0.0122	NS	NS	NS	NS	0.0
Total Calcium (mg/L)	5.31	NS	NS	NS	NS	9
Total Magnesium (mg/L) Total Sodium (mg/L)	2.52 1.73	NS NS	NS NS	NS NS	NS NS	:
Dissolved Calcium (mg/L)	5.04	NS NS	NS NS	NS NS	NS NS	
Dissolved Carcium (mg/L) Dissolved Magnesium (mg/L)	2.48	NS	NS	NS	NS	
Dissolved Sodium (mg/L)	1.71	NS	NS	NS	NS	
Total Boron (mg/L)	< 0.10	NS	NS	NS	NS	<
Cyanide (mg/L)	<0.0050	NS	NS	NS	NS	<0.0
Molybdenum (mg/L)	<0.0050	NS	NS	NS	NS	<0.
PCBs						
Aroclor 1016 (μg/L)	<1.0	NS	NS	NS	NS	
Aroclor 1221 (µg/L)	<1.0	NS	NS	NS	NS	<u> </u>
Aroclor 1232 (μg/L)	<1.0	NS NS	NS NS	NS NS	NS NS	+ -
Aroclor 1242 (μg/L) Aroclor 1248 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
Aroclor 1248 (μg/L) Aroclor 1254 (μg/L)	<1.0	NS	NS	NS NS	NS	
Aroclor 1260 (μg/L)	<1.0	NS	NS	NS	NS	† †
Aroclor 1268 (µg/L)	<1.0	NS	NS	NS	NS	
<u> </u>						+
J = Estimated concentration below the rep	norting limit (DI) and	ahove the method do	tection limit (MDI) +1	he MDL is based on a	statistical	+
J - Estimated concentration below the rej				IC MIDE IS DASEU Off a	statistical	+
calculation, the RL is normally set to 5 to	TO times the MIDL by	uie anaiviicai iaixii a				

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept Health (of Public	US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
				water Aquation	c Life Protection			c Life Protection	,		ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	14:00 4.51 10.77 54 8.00 1.5		ccc	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7															
Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) ⁶ Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L)	<0.10 0.00190 <0.002 0.08800 <0.01 1.44000 <0.008 0.19000 <0.10 <0.002 0.08800 <0.002	DNQ	0.7632 2.6078 0.4764 33.8548 150 0.7414 2.5035 0.4804	0.8397 3.4334 12.2253 33.8548 340 0.8451 3.2961 12.3274	0.3120	0.08962 2.6078 0.4764 33.8548 150 0.08706 2.5035 0.4804	0.46823 3.4334 12.2253 33.8548 340 0.4712 3.2961 12.3274	0.2909	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Head (1g/L) Silver (1g/L) Zinc (1g/L)	1.37E-03 <0.008 0.19000		33.3809	33.1100	0.26520	0.77	1.40	0.24727							
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	<2 <0.05 22.5 0.3 0.0 0.0 28.2 44.0	J				2.43 230 ≥ 20	5.62 860		2 10	250 500	4 10	250 2 500	200/400		
Cyanide (mg/L) PCBs (µg/L)	<0.0050		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5		0.2 0.5			0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	May	Flag		Toxics Rule	es Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:45														
In situ Parameters															
Water Temperature (°C)	8.50														
Dissolved Oxygen (mg/L)	11.03												>7		
Specific Conductance (mmhos/cm)	52									900					
pH (Standard Units)	7.77							6.5-9.0					6.5-8.5		
Turbidity (NTU)	< 0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (C		USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquation	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:30														
In situ Parameters															
Water Temperature (°C)	11.99														
Dissolved Oxygen (mg/L)	8.68												>7		
Specific Conductance (mmhos/cm)	59									900					
pH (Standard Units)	7.90							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.9									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

KF1 (Kilrac Forebay)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	: Life Protection	Fresh	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:31														
In situ Parameters															
Water Temperature (°C)	13.82														
Dissolved Oxygen (mg/L)	8.49												>7		
Specific Conductance (mmhos/cm)	92									900					
pH (Standard Units)	8.44							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

KF1 (Kilrac Forebay)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept.	of Public CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:40														
In situ Parameters															
Water Temperature (°C)	14.14														
Dissolved Oxygen (mg/L)	8.76												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.68							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.4									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

KF1 (Kilrac Forebay)	October	Flag	California	Toxics Rule	s Criteria (USEPA) 1		PA National R	ecommended 2 uality Criteria	Cal Dept.		US	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
		Ū	Fresl	nwater Aquati	c Life Protection			Life Protection			Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	12:20 11.75 9.48 100 8.28 0.4		ccc	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L)	<0.10 0.00280 <0.002 <0.003 0.00500 2.18000 <0.008 <0.002 <0.010 <0.002 0.04700 <0.002 2.77E-04 <0.008 <0.002	DNQ	1.4062 5.0711 1.2831 65.4666 150 1.3202 4.8683 1.1483	2.0204 7.1483 32.9268 65.4666 340 1.9675 6.8624 29.4677	1.1900 1.01148	0.15953 5.0711 1.2831 65.4666 150 0.14977 4.8683 1.1483 0.77 64.5500	1.03296 7.1483 32.9268 65.4666 340 1.0059 6.8624 29.4677 1.40 64.0263	1.1095 0.94310	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	2 <0.05 49.0 0.3 0.0 0.1 58.8 76.0 <0.0050 0.0	J	0.0052 0.014	0.022		1.57 230 ≥ 20 0.0052 0.014	3.27 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

			2	003		
	Manak	Mari	T	T1	A	+
	March	May	June	July	August	0
Time	12:45	13:36	11:28	11:21	8:54	1
In situ Parameters						
Water Temperature (°C)	6.40	10.61	12.57	16.05	12.46	1
Dissolved Oxygen (mg/L)	10.62	10.33	9.29	8.12	11.07	† † †
Specific Conductance (µmhos/cm)	69	61	70	106	103	
pH	7.75	7.82	7.96	8.21	8.16	
Turbidity (NTU)	5.8	2.2	5.6	2.5	0.8	
Depth (M)	0.6	1.0	1.0	1.0	1.0	
Analytical Parameters						4
Total Coliform (MPN/100 mL)	220	NS	NS	NS	NS	+
Fecal Coliform (MPN/100 mL)	8	NS	NS	NS	NS	11
Total Metals:						
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	++
Barium (mg/L)	0.0061	NS	NS	NS	NS	(
Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<(
Copper (µg/L)	0.384	NS	NS	NS	NS	(
Lead (μg/L) Manganese (μg/L)	0.063 4.46	NS NS	NS NS	NS NS	NS NS	+
Silver (µg/L)	<0.008	NS	NS	NS	NS	<(
Zinc (μg/L)	0.65	NS	NS	NS	NS	<
Dissolved Metals:						+
Arsenic (µg/L)	<0.10	NS	NS	NS	NS	+-
Barium (mg/L)	0.0043	NS	NS	NS	NS	0.
Cadmium (µg/L)	< 0.002	NS	NS	NS	NS	(
Copper (µg/L)	0.162	NS	NS	NS	NS	
Iron (mg/L)	0.011	NS	NS	NS	NS	0.
Lead (μg/L) Manganese (μg/L)	<0.002 0.72	NS NS	NS NS	NS NS	NS NS	<(
Mercury (μg/L)	0.00151	NS	NS	NS	NS	0.00
Silver (µg/L)	< 0.008	NS	NS	NS	NS	<(
Zinc (μg/L)	0.25	NS	NS	NS	NS	
Ammonia - Total (mg/L)	<0.05	NS	NS	NS	NS	+ -
Total Hardness, as CaCO3 (mg/L)	27.4	NS	NS	NS	NS	11
Chloride (mg/L)	0.36	NS	NS	NS	NS	
Fluoride (mg/L)	0.02	NS	NS	NS	NS	(
Nitrate, as NO3 (mg/L) + Nitrite (mg/L) Alkalinity - Total (mg/L)	0.0450	NS NS	NS NS	NS NS	NS NS	0.
Total Dissolved Solids (mg/L)	69	NS	NS	NS	NS	+-
Total Suspended Solids (mg/L)	6.6	NS	NS	NS	NS	
Total Phosphorous (mg/L)	<0.03	NS	NS	NS	NS	0.
Orthophosphate (mg/L)	0.0211	NS	NS	NS	NS	0.
Total Calcium (mg/L) Total Magnesium (mg/L)	6.76 3.01	NS NS	NS NS	NS NS	NS NS	-
Total Sodium (mg/L)	2.39	NS	NS	NS	NS	+
Dissolved Calcium (mg/L)	6.67	NS	NS	NS	NS	
Dissolved Magnesium (mg/L)	2.94	NS	NS	NS	NS	
Dissolved Sodium (mg/L)	2.37	NS NS	NS	NS	NS	+
Total Boron (mg/L) Cyanide (mg/L)	<0.10 <0.0050	NS NS	NS NS	NS NS	NS NS	<0.
Molybdenum (mg/L)	<0.0050	NS	NS	NS	NS	<0.
PCBs		110	370	375	3.70	
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	+-
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	++
Aroclor 1242 (µg/L)	<1.0	NS	NS	NS	NS	\Box
Aroclor 1248 (µg/L)	<1.0	NS	NS	NS	NS	П
Aroclor 1254 (μg/L)	<1.0	NS	NS	NS	NS	+
Aroclor 1260 (μg/L) Aroclor 1268 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	
J = Estimated concentration below the rep	_ , ,			ne MDL is based on a	statistical	
calculation, the RL is normally set to 5 to DNQ = Detected above MDL and below						

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria		c. of Public	US	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
1 owerhouse)		Ū		nwater Aquati	c Life Protection			Life Protection	,	Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	12:45 6.40 10.62 69 7.75 5.8		CCC	CMC	Instantaneous Max	ccc	СМС	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) Arsenic (ug/L) Barium (mg/L) Cadmium (ug/L) Copper (ug/L) Lead (ug/L) Manganese (ug/L) Silver (ug/L) Zinc (ug/L) Dissolved Metals (units of milligrams per liter) Arsenic (ug/L) Copper (ug/L) Copper (ug/L) Lead (ug/L) Mercury (ug/L) Silver (ug/L) Silver (ug/L) Zinc (ug/L)	<0.10 0.00610 <0.002 0.38400 0.06300 4.46000 <0.008 0.65000 <0.10 <0.002 0.16200 <0.002 1.51E-03 <0.005		0.8909 3.0859 0.6122 40.0057 150 0.8581 2.9625 0.5997	1.0487 4.1338 15.7104 40.0057 340 1.0468 3.9684 15.3906	0.4379 0.37218	0.10370 3.0859 0.6122 40.0057 150 0.09988 2.9625 0.5997 0.77 39.4457	0.57207 4.1338 15.7104 40.0057 340 0.5710 3.9684 15.3906 1.40 39.1256	0.4083 0.34702	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L) Primary and Secondary MCL = Maximum contaminan	8 <0.05 27.4 0.4 0.0 0.0 32.7 69.0 <0.0050 0.0		0.0052 0.014	0.022		3.38 230 ≥ 20 0.0052 0.014	8.85 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquation	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:36														
In situ Parameters															
Water Temperature (°C)	10.61														
Dissolved Oxygen (mg/L)	10.33												>7		
Specific Conductance (mmhos/cm)	61									900					
pH (Standard Units)	7.82							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.2									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:28														
In situ Parameters															
Water Temperature (°C)	12.57														
Dissolved Oxygen (mg/L)	9.29												>7		
Specific Conductance (mmhos/cm)	70									900					
pH (Standard Units)	7.96							6.5-9.0					6.5-8.5		
Turbidity (NTU)	5.6									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC3 (Old Cow Creek above Kilrac Powerhouse)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
ŕ			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:21														
In situ Parameters															
Water Temperature (°C)	16.05														
Dissolved Oxygen (mg/L)	8.12												>7		
Specific Conductance (mmhos/cm)	106									900					
pH (Standard Units)	8.21							6.5-9.0					6.5-8.5		
Turbidity (NTU)	2.5									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

OC3 (Old Cow Creek above Kilrac Powerhouse)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquation	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:54														
In situ Parameters															
Water Temperature (°C)	12.46														
Dissolved Oxygen (mg/L)	11.07												>7		
Specific Conductance (mmhos/cm)	103									900					
pH (Standard Units)	8.16							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC3 (Old Cow Creek above Kilrac Powerhouse)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (CDPH) 3		EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	nwater Aquation	Life Protection	Fresh	water Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time	13:02		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	I° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm)	13.04 9.42 109									900			>7		
pH (Standard Units) Turbidity (NTU)	8.07 0.4							6.5-9.0		5			6.5-8.5		
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L) Zinc (mg/L)	0.22000 0.07900 <0.002 0.17400 0.02000 6.18000 <0.008 <0.02 0.23000 0.09900 0.23000 <0.002 5.01E-04 <0.008 <0.002		1.4174 5.1153 1.2998 66.0321 150 1.3301 4.9107 1.1613	2.0436 7.2170 33.3551 66.0321 340 1.9893 6.9283 29.8017	1.2109 1.02929	0.16073 5.1153 1.2998 66.0321 150 0.15083 4.9107 1.1613 0.77	1.04367 7.2170 33.3551 66.0321 340 1.0159 6.9283 29.8017 1.40 64.5794	1.1291 0.95971	50 I 5 I,300 I5	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L)	240 <0.05 49.5					2.19	4.92						200/400		
Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L)	0.6 0.0 0.1 48.7 90.0 <0.0050		0.0052	0.022		230 ≥ 20 0.0052	0.022		2 10 0.15	250 500	4 10 0.2	250 2 500		0.7	220
PCBs (mg/L)	0.0		0.014			0.014			0.5		0.5			0.00017	0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (4 day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

OC2 Water Quality						
OC	2 (Old Cow Creel	k above confluer	ce with North Car	nyon Creek)		
				Ť Í I		
			20	003		
	March	May	June	July	August	Octobe
Time	NS	15:30	12:28	12:30	10:02	7:40
In situ Parameters						
Water Temperature (°C)	NS	11.55	12.63	16.64	12.55	10.44
Dissolved Oxygen (mg/L)	NS	9.98	9.48	8.63	9.97	9.63
Specific Conductance (µmhos/cm)	NS	54	63	97	97	103
pH	NS	7.73	7.94	8.17	8.18	7.89
Turbidity (NTU)	NS	0.7	1.7	0.0	0.0	0.0
Depth (M)	NS	1.0	1.0	1.0	1.0	1.0
NS = Constituent not sampled for during						

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

March	Flag		Toxics Rule	s Criteria (USEPA) ¹				-	_	USE	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
		Fresh	water Aquation	Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
		CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
NS														
NS														
NS												>7		
NS									900					
NS							6.5-9.0					6.5-8.5		
NS									5					
	NS NS NS NS	NS NS NS NS NS	March Flag Freshv NS CCC NS NS NS NS NS NS	March Flag Freshwater Aquatic NS	Preshwater Aquatic Life Protection CCC CMC Instantaneous Max NS NS NS NS NS NS NS	March Flag Freshwater Aquatic Life Protection Freshw NS	March Flag Freshwater Aquatic Life Protection Ambient Water Freshwater Aquatic Life Protection Freshwater Aquatic NS NS NS NS NS NS NS	March Flag Freshwater Aquatic Life Protection CCC CMC Instantaneous Max NS NS NS NS NS NS NS NS NS N	March Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection CCC CMC Instantaneous Max CCC CMC Instantaneous Max NS NS NS NS NS NS NS NS NS N	March Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Freshwater Aquatic Life Protection CCC CMC Instantaneous Max CCC CMC Instantaneous Max NS NS NS NS NS NS NS NS NS N	March Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Freshwater Quality Criteria Freshwater Aquatic Life Protection Freshwater Aquatic Life Protect	March Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Drinking Water Standards NS	March Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Freshwater Aquatic Life	March Flag Freshwater Aquatic Life Protection Ambient Water Quality Criteria Freshwater Aquatic Life Protection Freshwater Aquatic Life

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	May	Flag		Toxics Rule	s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
· ·			Fresh	water Aquation	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	15:30														
In situ Parameters															
Water Temperature (°C)	11.55														
Dissolved Oxygen (mg/L)	9.98												>7		
Specific Conductance (mmhos/cm)	54									900					
pH (Standard Units)	7.73							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.7									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	June	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE		RWQCB 4 Basin Plan	CTR (Human Health	, ,
•			Fresh	water Aquati	Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	12:28														
In situ Parameters															
Water Temperature (°C)	12.63														
Dissolved Oxygen (mg/L)	9.48												>7		
Specific Conductance (mmhos/cm)	63									900					
pH (Standard Units)	7.94							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.7									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC2 (Old Cow Creek above confluence with North Canyon Creek)	July	Flag		Toxics Rule	s Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
·			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	12:30														
In situ Parameters															
Water Temperature (°C)	16.64														
Dissolved Oxygen (mg/L)	8.63												>7		
Specific Conductance (mmhos/cm)	97									900					
pH (Standard Units)	8.17							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

OC2 (Old Cow Creek above confluence with North Canyon Creek)	August	Flag		Toxics Rule	s Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
· ·			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	later Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:02														
In situ Parameters															
Water Temperature (°C)	12.55														
Dissolved Oxygen (mg/L)	9.97												>7		
Specific Conductance (mmhos/cm)	97									900					
pH (Standard Units)	8.18							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

OC2 (Old Cow Creek above confluence with North Canyon Creek)	October	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USI		RWQCB 4 Basin Plan	CTR (Human Health	
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	later Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:40														
In situ Parameters															
Water Temperature (°C)	10.44														
Dissolved Oxygen (mg/L)	9.63												>7		
Specific Conductance (mmhos/cm)	103									900					
pH (Standard Units)	7.89							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

	'		2/	003		
			20	003		
	March	May	June	July	August	Octo
Time	9:40	12:18	10:55	10:52	8:05	11:5
	3.10	12.10	10.55	10.32	0.03	11.5
In situ Parameters						
Water Temperature (°C)	3.30	8.25	9.83	10.27	8.01	7.8
Dissolved Oxygen (mg/L)	11.14	10.49	8.83	9.24	12.15 93	10.8
Specific Conductance (μmhos/cm) pH	58 7.89	7.87	59 7.96	93 8.45	8.08	8.0
Turbidity (NTU)	2.8	0.1	0.5	0.1	0.0	0.
Depth (M)	0.1	1.0	1.0	1.0	1.0	1.
Analytical Parameters						
Total Coliform (MPN/100 mL)	26	NS	NS	NS	NS	1
Fecal Coliform (MPN/100 mL)	<2	NS	NS	NS	NS	
Total Metals: Arsenic (µg/L)	<0.10	NS	NS	NS	NS	<0.1
Barium (mg/L)	0.0015	NS	NS	NS	NS	0.001
Cadmium (µg/L)	<0.002	NS	NS	NS	NS	<0.00
Copper (μg/L) Lead (μg/L)	0.077 <0.01 DNQ	NS NS	NS NS	NS NS	NS NS	<0.00
Manganese (μg/L)	0.66	NS	NS	NS	NS	0.1
Silver (µg/L)	<0.008 0.15	NS NS	NS NS	NS NS	NS NS	<0.00
Zinc (µg/L)	0.13	IND	GNI	CM	CNI	<0.0
Dissolved Metals:	<0.10	NS	NC	NC	NC	<0.1
Arsenic (µg/L) Barium (mg/L)	0.0014	NS NS	NS NS	NS NS	NS NS	0.001
Cadmium (µg/L)	< 0.002	NS	NS	NS	NS	<0.00
Copper (µg/L) Iron (mg/L)	0.044	NS NS	NS NS	NS NS	NS NS	<0.00
Lead (µg/L)	<0.002	NS	NS	NS	NS	<0.002
Manganese (μg/L) Mercury (μg/L)	0.19 0.00172	NS NS	NS NS	NS NS	NS NS	<0.00 0.00012
Silver (µg/L)	<0.00172	NS NS	NS NS	NS NS	NS NS	<0.00
Zinc (µg/L)	0.16	NS	NS	NS	NS	<0.0
Ammonia - Total (mg/L)	<0.05	NS	NS	NS	NS	<0.0
Total Hardness, as CaCO3 (mg/L)	24.5 0.26	NS NS	NS NS	NS	NS NS	0.3
Chloride (mg/L) Fluoride (mg/L)	0.26 0.02 J	NS NS	NS NS	NS NS	NS	0.03
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.1100	NS	NS	NS	NS	0.054
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	30 46	NS NS	NS NS	NS NS	NS NS	44.
Total Suspended Solids (mg/L)	1.0	NS	NS	NS	NS	<1
Total Phosphorous (mg/L)	<0.03	NS	NS	NS	NS	< 0.01
Orthophosphate (mg/L) Total Calcium (mg/L)	0.0138 5.51	NS NS	NS NS	NS NS	NS NS	9.6
Total Magnesium (mg/L)	2.65	NS	NS	NS	NS	5.1
Total Sodium (mg/L) Dissolved Calcium (mg/L)	1.78 5.52	NS NS	NS NS	NS NS	NS NS	3.5 9.5
Dissolved Calcium (mg/L) Dissolved Magnesium (mg/L)	2.67	NS NS	NS NS	NS NS	NS NS	5.2
Dissolved Sodium (mg/L)	1.78	NS	NS	NS	NS	3.5
Total Boron (mg/L) Cyanide (mg/L)	<0.10 <0.0050	NS NS	NS NS	NS NS	NS NS	<0.10
Molybdenum (mg/L)	<0.0050	NS	NS	NS	NS	<0.005
PCBs						
Aroclor 1016 (µg/L)	<1.0	NS	NS	NS	NS	<0
Arcelor 1221 (µg/L)	<1.0	NS	NS	NS	NS NS	<0
Aroclor 1232 (μg/L) Aroclor 1242 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	<0.
Aroclor 1248 (µg/L)	<1.0	NS	NS	NS	NS	<0
Aroclor 1254 (µg/L)	<1.0	NS	NS	NS	NS NS	<0
Aroclor 1260 (μg/L) Aroclor 1268 (μg/L)	<1.0 <1.0	NS NS	NS NS	NS NS	NS NS	<0
" " "						
	: 1: :(DI)	above the method d	ntection limit (MDL) th	no MDL is based on a	statistical	
J = Estimated concentration below the repo	rfing limit (RI) and					

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	March	Flag			es Criteria (USEPA) ¹	Am	bient Water (Recommended ² Quality Criteria	Cal Dept. Health (EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	
					c Life Protection	Fresh		Life Protection			Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (umhos/cm) pH (Standard Units) Turbidity (NTU)	9:40 3.30 11.14 58 7.89 2.8		ccc	CMC	Instantaneous Max	ccc	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.10 0.00150 <0.002 0.07700 <0.01 0.66000 <0.008 0.15000 <0.10 <0.002 0.04400 <0.002 1.72E-03 <0.008 0.16000	DNQ	0.8160 2.8046 0.5309 36.3879 150 0.7897 2.6924 0.5288	0.9244 3.7202 13.6251 36.3879 340 0.9270 3.5714 13.5698	0.3612 0.30703	0.09545 2.8046 0.5309 36.3879 150 0.09239 2.6924 0.5288 0.77 35.8784	0.51057 3.7202 13.6251 36.3879 340 0.5120 3.5714 13.5698 1.40 35.5873	0.3368 0.28628	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (μg/L)	<2 <0.05 24.5 0.3 0.0 0.1 30.4 46.0 <0.0050 0.0	J	0.0052 0.014	0.022		2.84 230 ≥ 20 0.0052 0.014	6.89 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	May	Flag	California	Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public CDPH) 3	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, ,			Fresh	water Aquati	c Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	12:18														
In situ Parameters															
Water Temperature (°C)	8.25														
Dissolved Oxygen (mg/L)	10.49												>7		
Specific Conductance (mmhos/cm)	51									900					
pH (Standard Units)	7.87							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:55														
In situ Parameters															
Water Temperature (°C)	9.83														
Dissolved Oxygen (mg/L)	8.83												>7		
Specific Conductance (mmhos/cm)	59									900					
pH (Standard Units)	7.96							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.5									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule J. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

OC1 (Old Cow Creek above diversion)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	I° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:52														
In situ Parameters															
Water Temperature (°C)	10.27														
Dissolved Oxygen (mg/L)	9.24												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.45							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC1 (Old Cow Creek above diversion)	August	Flag		Γoxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Freshy	vater Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:05														
In situ Parameters															
Water Temperature (°C)	8.01														
Dissolved Oxygen (mg/L)	12.15												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.08							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

OC1 (Old Cow Creek above diversion)	October	Flag			s Criteria (USEPA) 1	An	nbient Water Q		Cal Dept. Health (CDPH) 3		EPA	RWQCB 4 Basin Plan	CTR (Human Health	
·			Fresl	nwater Aquation	Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C)	11:51 7.87		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
water Temperature (**C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	10.87 101 8.06 0.0							6.5-9.0		900 5			>7 6.5-8.5		
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Mercury (mg/L) Silver (mg/L) Zinc (mg/L) Zinc (mg/L) Zinc (mg/L)	<0.10 0.00170 <0.002 <0.003 <0.002 0.12000 <0.008 <0.002 <0.10 <0.002 <0.003 <0.002 1.26E-04 <0.008 <0.02	DNQ	1.4174 5.1153 1.2998 66.0321 150 1.3301 4.9107 1.1613	2.0436 7.2170 33.3551 66.0321 340 1.9893 6.9283 29.8017 64.5794	1.2109 1.02929	0.16073 5.1153 1.2998 66.0321 150 0.15083 4.9107 1.1613 0.77 65.1077	1.04367 7.2170 33.3551 66.0321 340 1.0159 6.9283 29.8017 1.40 64.5794	1.1291 0.95971	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8 Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	2 <0.05 49.5 0.3 0.0 0.1 44.8 76.0 <0.0050 0.0	J	0.0052 0.014	0.022		2.23 230 ≥ 20 0.0052 0.014	5.01 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (4 day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

					2003		1 1
					2003		
	Marc	h	May	June	July	August	О
Time	11:12		17:05	13:50	13:49	11:34	
In situ Parameters							
Water Temperature (°C)	7.32		8.15	8.24	8.38	7.85	
Dissolved Oxygen (mg/L)	9.51		10.23	9.72	10.11	13.43	
Specific Conductance (µmhos/cm)	78		71	78	80	75	
pH	7.85		7.54	7.91	8.10	7.90	,
Turbidity (NTU)	1.5		0.8	1.0	0.1	0.0	
Depth (M)	0.1		1.0	1.0	1.0	1.0	
Analytical Parameters							
Total Coliform (MPN/100 mL)	50		NS	NS	NS	NS	
Fecal Coliform (MPN/100 mL)	4		NS	NS	NS	NS	
Total Metals:							
Arsenic (μg/L)	< 0.10		NS	NS	NS	NS	-
Barium (mg/L)	0.0074		NS	NS	NS	NS	0.0
Cadmium (µg/L)	< 0.01	DNQ	NS	NS	NS	NS	<0
Copper (µg/L)	0.62		NS	NS	NS	NS	<0
Lead (μg/L) Manganese (μg/L)	0.194 15.1		NS NS	NS NS	NS NS	NS NS	<0
Manganese (μg/L) Silver (μg/L)	<0.008		NS NS	NS NS	NS NS	NS NS	<0
Zinc (µg/L)	1.79		NS	NS	NS	NS	<
Dissolved Metals:							
Arsenic (µg/L)	< 0.10		NS	NS	NS	NS	-
Barium (mg/L)	0.0036		NS	NS	NS	NS	0.0
Cadmium (μg/L)	< 0.002		NS	NS	NS	NS	<0
Copper (µg/L)	0.05		NS	NS	NS	NS	<0
Iron (mg/L)	0.0073	DNO	NS	NS	NS	NS	0
Lead (μg/L) Manganese (μg/L)	<0.01	DNQ	NS NS	NS NS	NS NS	NS NS	<0
Mercury (µg/L)	0.00169		NS	NS	NS	NS	0.000
Silver (µg/L)	< 0.008		NS	NS	NS	NS	<0
Zinc (μg/L)	0.20		NS	NS	NS	NS	<
Ammonia - Total (mg/L)	0.072	J	NS	NS	NS	NS	<
Total Hardness, as CaCO3 (mg/L)	32.2		NS	NS	NS	NS	
Chloride (mg/L)	0.36		NS	NS	NS	NS	1
Fluoride (mg/L) Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.03		NS NS	NS NS	NS NS	NS NS	0.0
Alkalinity - Total (mg/L)	37		NS NS	NS	NS	NS	0.0
Total Dissolved Solids (mg/L)	79		NS	NS	NS	NS	
Total Suspended Solids (mg/L)	6.0		NS	NS	NS	NS	
Total Phosphorous (mg/L)	< 0.03		NS	NS	NS	NS	0.
Orthophosphate (mg/L)	0.0439		NS	NS NS	NS NS	NS	0.0
Total Calcium (mg/L) Total Magnesium (mg/L)	7.91 3.21		NS NS	NS NS	NS NS	NS NS	
Total Sodium (mg/L)	3.46		NS	NS	NS	NS	
Dissolved Calcium (mg/L)	7.60		NS	NS	NS	NS	
Dissolved Magnesium (mg/L)	3.07	\Box	NS	NS	NS	NS	
Dissolved Sodium (mg/L)	3.41		NS	NS	NS NS	NS	
Total Boron (mg/L) Cyanide (mg/L)	<0.10 <0.0050		NS NS	NS NS	NS NS	NS NS	<0.0
Molybdenum (mg/L)	<0.0050		NS	NS	NS	NS	<0.0
PCBs							
Aroclor 1016 (µg/L)	<1.0		NS	NS	NS	NS	
Arcelor 1221 (µg/L)	<1.0 <1.0		NS NS	NS NS	NS NS	NS NS	
Aroclor 1232 (μg/L) Aroclor 1242 (μg/L)	<1.0		NS NS	NS NS	NS NS	NS NS	
Aroclor 1242 (µg/L) Aroclor 1248 (µg/L)	<1.0		NS	NS	NS	NS	
Aroclor 1254 (µg/L)	<1.0		NS	NS	NS	NS	
Aroclor 1260 (µg/L)	<1.0		NS	NS	NS	NS	
Aroclor 1268 (μg/L)	<1.0		NS	NS	NS	NS	
J = Estimated concentration below the rep	orting limit (1	RL) and al	oove the method	detection limit (MD)	L), the MDL is based	on a statistical	
calculation, the RL is normally set to 5 to						on a satisfical	

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC2 (South Canyon Creek above the confluence with North Canyon Creek)	March	Flag	California	Toxics Rule	es Criteria (USEPA) ¹		PA National R	Recommended ² Quality Criteria	Cal Dept. Health (of Public	USI	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
, , , , , , , , , , , , , , , , , , , ,			Fresh	nwater Aquati	c Life Protection	Fresh	nwater Aquatic	Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	7.32 9.51 78 7.85 1.5		ccc	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max 6.5-9.0	I° MCL	2° MCL 900 5	I° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consump)
Analytical Parameters Total Metals (units of milligrams per liter) 7 Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L)	<0.10 0.00740 <0.01 0.62000 0.19400 15.10000 <0.008 1.79000 <0.10 <0.002 0.05000 <0.01 1.69200 <0.01 0.02 0.05000 <0.01 0.002 0.002 0.002 0.000 <0.01 0.002 0.000 <0.000 <0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.0000 0.000	DNQ	1.0113 3.5424 0.7519 45.8694 150 0.9672 3.4007 0.7189	1.2582 4.8128 19.2944 45.8694 340 1.2474 4.6203 18.4478	0.5780 0.49128	0.11688 3.5424 0.7519 45.8694 150 0.11178 3.4007 0.7189 0.77 45.2272	0.67409 4.8128 19.2944 45.8694 340 0.6683 4.6203 18.4478 1.40 44.8602	0.5389 0.45807	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	4 0.072 32.2 0.4 0.0 0.1 37.0 79.0 <0.0050 0.0	J	0.0052 0.014	0.022		2.99 230 ≥ 20 0.0052 0.014	7.41 860 0.022		2 10 0.15 0.5	250 500	4 10 0.2 0.5	250 2 500	200/400	0.7 0.00017	220 0.00017

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC2 (South Canyon Creek above the confluence with North Canyon Creek)	3.6	Flag		Toxics Rule	s Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
* '			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	later Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	17:05														
In situ Parameters															
Water Temperature (°C)	8.15														
Dissolved Oxygen (mg/L)	10.23												>7		
Specific Conductance (mmhos/cm)	71									900					
pH (Standard Units)	7.54							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.8									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC2 (South Canyon Creek above the confluence with North Canyon Creek)	T	Flag		Toxics Rule	es Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
·			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:50														
In situ Parameters															
Water Temperature (°C)	8.24														
Dissolved Oxygen (mg/L)	9.72												>7		
Specific Conductance (mmhos/cm)	78									900					
pH (Standard Units)	7.91							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.0									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC2 (South Canyon Creek above the confluence with North Canyon Creek)	T 1	Flag		Toxics Rule	s Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
•			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:49														
In situ Parameters															
Water Temperature (°C)	8.38														
Dissolved Oxygen (mg/L)	10.11												>7		
Specific Conductance (mmhos/cm)	80									900					
pH (Standard Units)	8.10							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

CC2 (South Canyon Creek above the confluence with North Canyon Creek)		Flag		Toxics Rule	s Criteria (USEPA) 1	Aml	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
· ·			Fresh	water Aquati	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:34														
In situ Parameters															
Water Temperature (°C)	7.85														
Dissolved Oxygen (mg/L)	13.43												>7		
Specific Conductance (mmhos/cm)	75									900					
pH (Standard Units)	7.90							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CC2 (South Canyon Creek above the confluence with North Canyon Creek)	October	Flag			Criteria (USEPA) 1	An	nbient Water Q			of Public CDPH) 3	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquatic	Life Protection	Fresh	water Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	9:38														
In situ Parameters															
Water Temperature (°C)	7.53														
Dissolved Oxygen (mg/L)	9.78												>7		
Specific Conductance (mmhos/cm)	76									900			- /		
pH (Standard Units)	7.80							6.5-9.0		,,,,			6.5-8.5		
Turbidity (NTU)	0.1							0.5 7.0		5			0.5 0.5		
Turbidity (1110)	0.1									3					
Analytical Parameters															
Total Metals (units of milligrams per liter) 7															
Arsenic (mg/L)	< 0.10								50		10				
Barium (mg/L)	0.00290								1		2			1.0	
Cadmium (mg/L)	< 0.002	DNQ	0.9691	1.1835		0.11227	0.63792		5		5				
Copper (mg/L)	< 0.003		3.3819	4.5731		3.3819	4.5731		1,300	1,000	1,300	1,000		1,300	
Lead (mg/L)	< 0.002		0.7017	18.0071		0.7017	18.0071		15		15				
Manganese (mg/L)	0.34000									50		50			
Silver (mg/L)	< 0.008				0.5265			0.4909		100					
Zinc (mg/L)	< 0.02		43.8090	43.8090		43.8090	43.8090			5,000					
Dissolved Metals (units of milligrams per liter) 6															
Arsenic (mg/L)	< 0.10		150	340		150	340								
Cadmium (mg/L)	< 0.002		0.9290	1.1760		0.10764	0.6339								
Copper (mg/L)	< 0.003		3.2467	4.3901		3.2467	4.3901								
Lead (mg/L)	< 0.002	DNQ	0.6765	17.3593		0.6765	17.3593								
Mercury (mg/L)	1.26E-04					0.77	1.40								
Silver (mg/L)	< 0.008				0.44752			0.41727							
Zinc (mg/L)	< 0.02		43.1957	42.8452		43.1957	42.8452								
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) 10	2												200/400		
Ammonia - Total (mg/L) 5	< 0.05	, I				3.18	8.11						200/400		
Total Hardness, as CaCO3 (mg/L)	<0.05 30.5	J				3.10	0.11								
Chloride (mg/L) 9	0.4					230	860			250		250			
Fluoride (mg/L)	0.4					230	300		2	230	4	2			
Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.0								10		10	4			
Alkalinity - Total (mg/L)	29.8					≥ 20			10		10				
Total Dissolved Solids (mg/L)	81.0					£ 20				500		500			
Cyanide (mg/L)	< 0.0050		0.0052	0.022		0.0052	0.022		0.15	300	0.2	300		0.7	220
PCBs (mg/L)	0.0		0.0032	0.022		0.0032	0.022		0.15		0.2			0.00017	0.00017
i CDs (ing/D)	0.0		0.014			0.017			0.5		0.5			0.00017	0.00017
Discourse of Court MCI Mariness of the Court			······································	b ld. b							i .		<u> </u>	l	L

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California [California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 / 100 mL.

	-					2003		
						2003		
	Marc	h	May		June	July	August	Oct
Time	9:00		16:10		13:01	13:02	10:36	8:
	7.00		10.10		13.01	13.02	10.30	0.
In situ Parameters								
Water Temperature (°C) Dissolved Oxygen (mg/L)	7.50 9.49		8.53 10.20		9.03	9.96	9.20	9.5
Specific Conductance (µmhos/cm)	109		10.20		9.39	9.81	9.31	9.:
рН	7.79		7.64		7.90	8.30	8.16	7.9
Turbidity (NTU)	1.4		0.1		1.0	0.1	0.0	C
Depth (M)	0.1		0.1		0.1	0.1	0.1	C
Analytical Parameters								
Total Coliform (MPN/100 mL)	500		NS		NS	NS	NS	3:
Fecal Coliform (MPN/100 mL)	80		NS		NS	NS	NS	
Total Metals:								
Arsenic (µg/L)	< 0.10		NS		NS	NS	NS	<0.
Barium (mg/L)	0.0085		NS		NS	NS	NS	0.01
Cadmium (µg/L)	< 0.002		NS		NS	NS	NS	<0.0
Copper (µg/L) Lead (µg/L)	0.09		NS NS		NS NS	NS NS	NS NS	<0.0
Manganese (μg/L)	2.24		NS		NS	NS	NS	2.
Silver (µg/L)	< 0.008		NS		NS	NS	NS	< 0.0
Zinc (µg/L)	1.56		NS		NS	NS	NS	0.
Dissolved Metals:	+			++				
Arsenic (μg/L)	< 0.10		NS		NS	NS	NS	<0.
Barium (mg/L)	0.0081		NS		NS	NS	NS	0.01
Cadmium (µg/L)	<0.002		NS NS		NS NS	NS NS	NS NS	<0.0
Copper (μg/L) Iron (mg/L)	0.0088		NS NS		NS NS	NS	NS NS	<0.0
Lead (µg/L)		DNQ	NS		NS	NS	NS	<0.0
Manganese (μg/L)	0.59		NS		NS	NS	NS	0.
Mercury (μg/L) Silver (μg/L)	0.00195 <0.008		NS NS		NS NS	NS NS	NS NS	0.0006
Zinc (µg/L)	1.18		NS NS		NS	NS	NS	0.0
	0.055		170		3.70	,,,,	110	
Ammonia - Total (mg/L) Total Hardness, as CaCO3 (mg/L)	0.065 49.5	J	NS NS		NS NS	NS NS	NS NS	<0.
Chloride (mg/L)	0.49		NS		NS	NS	NS	0.
Fluoride (mg/L)	0.024		NS		NS	NS	NS	0.0
Nitrate, as NO3 (mg/L) + Nitrite (mg/L)	0.0647		NS		NS	NS	NS	0.05
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L)	57.8 97		NS NS		NS NS	NS NS	NS NS	52
Total Suspended Solids (mg/L)	2.0		NS		NS	NS	NS	
Total Phosphorous (mg/L)	< 0.03		NS		NS	NS	NS	0.09
Orthophosphate (mg/L) Total Calcium (mg/L)	0.0331		NS NS		NS NS	NS NS	NS NS	0.05
Total Calcium (mg/L) Total Magnesium (mg/L)	11.00 5.09		NS NS		NS NS	NS NS	NS NS	5.
Total Sodium (mg/L)	3.86		NS		NS	NS	NS	4.
Dissolved Calcium (mg/L)	11.10		NS		NS	NS	NS	10.
Dissolved Magnesium (mg/L) Dissolved Sodium (mg/L)	5.10 3.83		NS NS		NS NS	NS NS	NS NS	5.
Total Boron (mg/L)	<0.10		NS NS		NS NS	NS NS	NS NS	<0.
Cyanide (mg/L)	< 0.0050		NS		NS	NS	NS	< 0.00
Molybdenum (mg/L)	< 0.0050		NS		NS	NS	NS	<0.00
PCBs			3.70		210	370	210	
Aroclor 1016 (μg/L) Aroclor 1221 (μg/L)	<1.0 <1.0		NS NS		NS NS	NS NS	NS NS	<(
Aroclor 1221 (μg/L) Aroclor 1232 (μg/L)	<1.0		NS		NS	NS	NS	<(
Aroclor 1242 (µg/L)	<1.0		NS		NS	NS	NS	<(
Aroclor 1248 (μg/L)	<1.0		NS	-	NS	NS	NS	<(
Aroclor 1254 (μg/L) Aroclor 1260 (μg/L)	<1.0 <1.0		NS NS		NS NS	NS NS	NS NS	<(
Aroclor 1268 (μg/L) Aroclor 1268 (μg/L)	<1.0		NS NS		NS NS	NS NS	NS NS	<1
J = Estimated concentration below the rep					limit (MDL), the MDL is based on a	a statistical	
calculation, the RL is normally set to 5 to DNQ = Detected above MDL and below 1								

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	March	Flag	California	a Toxics Rul	es Criteria (USEPA) ¹			l Recommended ² r Quality Criteria	Cal Dept Health (EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
,			Fresl	hwater Aquati	ic Life Protection		Freshwater Aqua	tic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (µmhos/cm) pH (Standard Units) Turbidity (NTU)	9:00 7.50 9.49 109 7.79 1.4		ccc	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max 6.5-9.0	1° MCL	2° MCL 900 5	1° MCL	2° MCL	>7 6.5-8.5	(water + organism consump)	(aquatic org. consum
Analytical Parameters															
Total Metals (units of milligrams per liter) ⁷ Arsenic (µg/L) Barium (mg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Manganese (µg/L) Silver (µg/L) Zinc (µg/L) Dissolved Metals (units of milligrams per liter) ⁶ Arsenic (µg/L) Cadmium (µg/L) Copper (µg/L) Lead (µg/L) Mercury (µg/L) Silver (µg/L) Silver (µg/L) Zinc (µg/L) Zinc (µg/L)	<0.10 0.00850 <0.002 0.09000 0.02100 2.24000 <0.008 1.56000 <0.10 <0.002 0.06000 <0.01 1.95E-03 <0.008 1.18000	DNQ	1.4174 5.1153 1.2998 66.0321 150 1.3301 4.9107 1.1613	2.0436 7.2170 33.3551 66.0321 340 1.9893 6.9283 29.8017	1.2109 1.02929	0.16073 5.1153 1.2998 66.0321 150 0.15083 4.9107 1.1613 0.77	1.04367 7.2170 33.3551 66.0321 340 1.0159 6.9283 29.8017 1.40 64.5794	1.1291 0.95971	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) ⁵ Total Hardness, as CaCO3 (mg/L) Chloride (mg/L) ⁹ Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] ⁸ Alkalinity - Total (mg/L)	80 0.065 49.5 0.5 0.0 0.1 57.8	1				3.22 230 ≥ 20	8.25 860		2 10	250	4 10	250 2	200/400		
Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (µg/L)	97.0 <0.0050 0.0		0.0052 0.014	0.022		0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium
- 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

I = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	16:10														
In situ Parameters															
Water Temperature (°C)	8.53														
Dissolved Oxygen (mg/L)	10.20												>7		
Specific Conductance (mmhos/cm)	108									900					
pH (Standard Units)	7.64							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (_	USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	: Life Protection	Freshy	water Aquati	ic Life Protection		Drinking W	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:01														
In situ Parameters															
Water Temperature (°C)	9.03														
Dissolved Oxygen (mg/L)	9.39												>7		
Specific Conductance (mmhos/cm)	112									900					
pH (Standard Units)	7.90							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.0									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

CC1 (South Canyon Creek above diversion)	July	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:02														
In situ Parameters															
Water Temperature (°C)	9.96														
Dissolved Oxygen (mg/L)	9.81												>7		
Specific Conductance (mmhos/cm)	116									900					
pH (Standard Units)	8.30							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CC1 (South Canyon Creek above diversion)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (of Public	USI	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:36														
In situ Parameters															
Water Temperature (°C)	9.20														
Dissolved Oxygen (mg/L)	9.31												>7		
Specific Conductance (mmhos/cm)	111									900					
pH (Standard Units)	8.16							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

CC1 (South Canyon Creek above diversion)	October	Flag			s Criteria (USEPA) 1	Ar	nbient Water Q		Cal Dept. Health (EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	hwater Aquation	c Life Protection	Fresh	hwater Aquatic	Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
Time In situ Parameters	8:16		CCC	СМС	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Water Temperature (°C) Dissolved Oxygen (mg/L)	8.93 9.51												>7		
Specific Conductance (mmhos/cm) pH (Standard Units) Turbidity (NTU)	115 7.92 0.1							6.5-9.0		900			6.5-8.5		
•															
Analytical Parameters															
Total Metals (units of milligrams per liter) 7 Arsenic (mg/L) Barium (mg/L) Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Manganese (mg/L) Silver (mg/L) Zinc (mg/L) Dissolved Metals (units of milligrams per liter) 6 Arsenic (mg/L)	<0.10 0.01250 <0.002 <0.003 0.01000 2.26000 <0.008 0.93000		1.4376 5.1947 1.3300 67.0480	2.0856 7.3406 34.1290 67.0480	1.2491	0.16289 5.1947 1.3300 67.0480	1.06297 7.3406 34.1290 67.0480	1.1646	50 1 5 1,300 15	1,000 50 100 5,000	10 2 5 1,300 15	1,000 50		1.0 1,300	
Cadmium (mg/L) Copper (mg/L) Lead (mg/L) Mercury (mg/L) Silver (mg/L) Zinc (mg/L)	<0.002 <0.003 <0.002 6.79E-04 <0.008 0.48000	DNQ	1.3480 4.9869 1.1848 66.1093	2.0286 7.0469 30.4035	1.06169	0.15274 4.9869 1.1848 0.77 66.1093	1.0339 7.0469 30.4035 1.40 65.5729	0.98992							
Additional Analytical Parameters															
Fecal Coliform (MPN/100mL) ¹⁰ Ammonia - Total (mg/L) 5 Total Hardness, as CaCO3 (mg/L)	30 <0.05 50.4	J				2.72	6.52						200/400		
Chloride (mg/L) 9 Fluoride (mg/L) Nitrate, as NO3 (mg/L), [Nitrite (mg/L)] 8	0.5 0.0 0.1					230	860		2 10	250	4 10	250 2			
Alkalinity - Total (mg/L) Total Dissolved Solids (mg/L) Cyanide (mg/L) PCBs (mg/L)	52.1 104.0 <0.0050 0.0		0.0052 0.014	0.022		≥ 20 0.0052 0.014	0.022		0.15 0.5	500	0.2 0.5	500		0.7 0.00017	220 0.00017

and the RL represents higher analytical accuracy that can be achieved by the laboratory

Shaded cells represent exceedances of the criteria

NS = Constituent was not sampled for during this month

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- 5. Ammonia concentration range based on the pH and temperature measurements collected for the month during the sampling program, criteria are for when fish early life stages present (CCC) and when salmonid fish are present (CMC)
- 6. Dissolved metals criteria for cadmium, chromium, copper, lead, nickel, silver, and zinc are calculated using the site and time specific hardness value
- 7. Criteria for CTR and USEPA National ambient criteria expressed as total recoverable based on calculation using hardness for cadmium, chromium, copper, lead, nickel, silver, and zinc.
- 8. Criteria for total nitrate + nitrite as nitrogen (N)
- 9. USEPA National Ambient Criterion for chloride is for dissolved chloride associated with sodium, criterion will probably not be adequately protective when chloride is associated with potassium, calcium, or magnesium, rather than sodium 10. Fecal Coliform limit is a monthly geometric mean of < 200 / 100 mL, and no more than 10% of the monthly observations above 400 /100 mL.

J = Estimated concentration below the reporting limit (RL) and above the method detection limit(MDL), the MDL is based on a statistical calculation, the RL is normally set to 5 to 10 times the MDL

			20	003		
	March	May	June	July	August	Octobe
Time	NS	17:00	13:47	13:45	11:30	9:42
In situ Parameters						
Water Temperature (°C)	NS	8.36	10.82	11.91	10.90	10.26
Dissolved Oxygen (mg/L)	NS	10.31	9.04	10.01	9.14	8.45
Specific Conductance (µmhos/cm)	NS	67	79	93	95	18
pH	NS	7.51	7.89	8.06	8.08	7.97
Turbidity (NTU)	NS	0.5	1.0	0.1	1.9	0.8
Depth (M)	NS	1.0	1.0	1.0	1.0	1.0
						1

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept Health (- /	USE		RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	May	Flag		Γoxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
, and the second			Fresh	vater Aquation	: Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	17:00														
In situ Parameters															
Water Temperature (°C)	8.36														
Dissolved Oxygen (mg/L)	10.31												>7		
Specific Conductance (mmhos/cm)	67									900					
pH (Standard Units)	7.51							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.5									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	June	Flag			s Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	, ,
•			Fresh	water Aquation	: Life Protection	Fresh	water Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:47														
In situ Parameters															
Water Temperature (°C)	10.82														
Dissolved Oxygen (mg/L)	9.04												>7		
Specific Conductance (mmhos/cm)	79									900					
pH (Standard Units)	7.89							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

NC2 (North Canyon Creek above confluence with South Canyon Creek)	July	Flag		Toxics Rule	es Criteria (USEPA) 1	Amb	ient Water	Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquation	c Life Protection	Freshv	ater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	13:45														
In situ Parameters															
Water Temperature (°C)	11.91														
Dissolved Oxygen (mg/L)	10.01												>7		
Specific Conductance (mmhos/cm)	93									900					
pH (Standard Units)	8.06							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					
pH (Standard Units)	8.06							6.5-9.0		900			6.5-8.5		

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

NC2 (North Canyon Creek above confluence with South Canyon Creek)	August	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (CDPH) 3	USE		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
•			Fresh	water Aquation	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	11:30														
In situ Parameters															
Water Temperature (°C)	10.90														
Dissolved Oxygen (mg/L)	9.14												>7		
Specific Conductance (mmhos/cm)	95									900					
pH (Standard Units)	8.08							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.9									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards, Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

NC2 (North Canyon Creek above confluence with South Canyon Creek)	October	Flag			es Criteria (USEPA) 1	Am	bient Water	Recommended 2 Quality Criteria c Life Protection	Cal Dept. Health (USE ater Standards		RWQCB 4 Basin Plan Objectives	CTR (Human Health Sources of Drinking water	30-day average) Other waters
Time	9:42		CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL	Objectives	(water + organism consump)	(aquatic org. consump)
In situ Parameters Water Temperature (°C) Dissolved Oxygen (mg/L) Specific Conductance (mmhos/cm) pH (Standard Units)	10.26 8.45 18 7.97							6.5-9.0		900			>7 6.5-8.5		
Turbidity (NTU)	0.8									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

HG1 Water Quality						
	HG1 (H	Hooten Gulch bel	ow Powerhouse)			
			20	003		
	N. 1		T .			0 . 1
	March	May	June	July	August	Octobe
Time	NS	10:18	7:30	7:39	18:11	8:20
In situ Parameters						
Water Temperature (°C)	NS	10.99	15.30	19.10	18.41	14.05
Dissolved Oxygen (mg/L)	NS	10.73	9.34	8.46	9.95	9.88
Specific Conductance (µmhos/cm)	NS	92	89	122	122	129
pH	NS	7.87	7.71	7.97	8.52	7.79
Turbidity (NTU)	NS	0.1	1.6	1.8	0.0	0.0
Depth (M)	NS	1.0	1.0	1.0	1.0	1.0

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	March	Flag		Toxics Rule	es Criteria (USEPA) ¹			Recommended ² Quality Criteria	Cal Dept.	of Public	USE	EPA	RWQCB ⁴ Basin Plan	CTR (Human Health	30-day average)
			Fresh	water Aquati	c Life Protection	Freshy	vater Aquati	c Life Protection		Drinking W	ater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	NS														
In situ Parameters															
Water Temperature (°C)	NS														
Dissolved Oxygen (mg/L)	NS												>7		
Specific Conductance (µmhos/cm)	NS									900					
pH (Standard Units)	NS							6.5-9.0					6.5-8.5		
Turbidity (NTU)	NS									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	May	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	10:18														
In situ Parameters															
Water Temperature (°C)	10.99														
Dissolved Oxygen (mg/L)	10.73												>7		
Specific Conductance (mmhos/cm)	92									900					
pH (Standard Units)	7.87							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.1									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	June	Flag		Toxics Rule	s Criteria (USEPA) 1			Recommended 2 Quality Criteria	Cal Dept. Health (USE	EPA	RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Fresh	water Aquati	c Life Protection	Freshy	water Aquati	ic Life Protection		Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters
			CCC	СМС	Instantaneous Max	CCC	СМС	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:30														
In situ Parameters															
Water Temperature (°C)	15.30														
Dissolved Oxygen (mg/L)	9.34												>7		
Specific Conductance (mmhos/cm)	89									900					
pH (Standard Units)	7.71							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.6									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

Table 1. Monthly Water Quality Data Compared to Applicable Water Quality Criteria

HG1 (Hooten Gulch below Powerhouse)	July	Flag	California Toxics Rules Criteria (USEPA) 1			USEPA National Recommended 2 Ambient Water Quality Criteria Freshwater Aquatic Life Protection			Cal Dept. of Public Health (CDPH) ³		USEPA		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Freshwater Aquatic Life Protection						Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters	
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	7:39														
In situ Parameters															
Water Temperature (°C)	19.10														
Dissolved Oxygen (mg/L)	8.46												>7		
Specific Conductance (mmhos/cm)	122									900					
pH (Standard Units)	7.97							6.5-9.0					6.5-8.5		
Turbidity (NTU)	1.8									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

HG1 (Hooten Gulch below Powerhouse)	August	Flag	California Toxics Rules Criteria (USEPA) 1			USEPA National Recommended 2 Ambient Water Quality Criteria Freshwater Aquatic Life Protection			Cal Dept. of Public Health (CDPH) ³		USEPA		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
,			Freshwater Aquatic Life Protection						Drinking V	Vater Standards		Objectives	Sources of Drinking water	Other waters	
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	18:11														
In situ Parameters															
Water Temperature (°C)	18.41														
Dissolved Oxygen (mg/L)	9.95												>7		
Specific Conductance (mmhos/cm)	122									900					
pH (Standard Units)	8.52							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

- 1. USEPA Water Quality Standards, Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.
- NS = Constituent not sampled for during monitoring program

HG1 (Hooten Gulch below Powerhouse)	October	Flag	California Toxics Rules Criteria (USEPA) 1 Freshwater Aquatic Life Protection			USEPA National Recommended 2 Ambient Water Quality Criteria Freshwater Aquatic Life Protection			Cal Dept. of Public Health (CDPH) ³		USEPA		RWQCB 4 Basin Plan	CTR (Human Health	30-day average)
*										Drinking W	Water Standards		Objectives	Sources of Drinking water	Other waters
			CCC	CMC	Instantaneous Max	CCC	CMC	Instantaneous Max	1° MCL	2° MCL	1° MCL	2° MCL		(water + organism consump)	(aquatic org. consump)
Time	8:20														
In situ Parameters															
Water Temperature (°C)	14.05														
Dissolved Oxygen (mg/L)	9.88												>7		
Specific Conductance (mmhos/cm)	129									900					
pH (Standard Units)	7.79							6.5-9.0					6.5-8.5		
Turbidity (NTU)	0.0									5					

Shaded cells represent exceedances of the criteria

CCC = Continuous concentration (4-day average)

CMC = Maximum concentration (1-hour average)

- 1. USEPA Water Quality Standards; Establishment on Numeric Criteria for Priority Toxic Pollutants for the State of California California Toxics Rule]. (USEPA, 2000; 40 CFR Part 131)
- 2. USEPA National Recommended Water Quality Criteria, Freshwater Aquatic Life Protection (USEPA, 2006; EPA 822-H-04-001)
- 3. CA CFR Title 22 Drinking Water Regulations. Updated March 9, 2008.
- 4. Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins.

NS = Constituent not sampled for during monitoring program